Skip to content

Instantly share code, notes, and snippets.

@michaelgruner
Created October 6, 2023 21:48
Show Gist options
  • Save michaelgruner/15a4fe72a0c32a23fe31bfff8cccfc7d to your computer and use it in GitHub Desktop.
Save michaelgruner/15a4fe72a0c32a23fe31bfff8cccfc7d to your computer and use it in GitHub Desktop.
LightGlue: Local Feature Matching at Light Speed
#!/usr/bin/env python3
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv.imread('./sensor4_00230.jpeg')
img2 = cv.imread('./sensor3_00230.jpeg')
# Initiate SIFT detector
sift = cv.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(dst_pts, src_pts, cv.RANSAC,5.0)
h,w,_ = img1.shape
T = np.float32([[1, 0, 0], [0, 1, h/2], [0, 0, 1]])
M = T @ M
matchesMask = mask.ravel().tolist()
dst = cv.warpPerspective(img2, M, (w*2, h*2))
dst[h//2:h//2+h ,0:w,:] = img1
else:
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
matchesMask = None
plt.imshow(dst[...,::-1])
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment