Created
November 17, 2009 11:37
-
-
Save michaelmelanson/236850 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.stats.distributions import binom | |
data = [ | |
{'name': 'ISTJ', 'count': 12, 'expected': 0.1160}, | |
{'name': 'ISFJ', 'count': 4, 'expected': 0.1380}, | |
{'name': 'INFJ', 'count': 14, 'expected': 0.0150}, | |
{'name': 'INTJ', 'count': 206, 'expected': 0.0210}, | |
{'name': 'ISTP', 'count': 16, 'expected': 0.0540}, | |
{'name': 'ISFP', 'count': 1, 'expected': 0.0880}, | |
{'name': 'INFP', 'count': 56, 'expected': 0.0430}, | |
{'name': 'INTP', 'count': 191, 'expected': 0.0430}, | |
{'name': 'ESTP', 'count': 3, 'expected': 0.0430}, | |
{'name': 'ESFP', 'count': 1, 'expected': 0.0850}, | |
{'name': 'ENFP', 'count': 22, 'expected': 0.0810}, | |
{'name': 'ENTP', 'count': 56, 'expected': 0.0330}, | |
{'name': 'ESTJ', 'count': 9, 'expected': 0.0870}, | |
{'name': 'ESFJ', 'count': 5, 'expected': 0.1230}, | |
{'name': 'ENFJ', 'count': 15, 'expected': 0.0240}, | |
{'name': 'ENTJ', 'count': 49, 'expected': 0.0180}, | |
] | |
n = sum(group['count'] for group in data) | |
CONFIDENCE_INTERVAL = 0.99 | |
def is_significant(prob): return prob < (1.0 - CONFIDENCE_INTERVAL) | |
print " Using a binomial test at a %.0f%c confidence level." % (100*CONFIDENCE_INTERVAL, '%') | |
print '' | |
print 'Single-group results:' | |
for group in data: | |
prob = binom.pmf(group['count'], n, group['expected']) | |
freq = 100.0 * float(group['count']) / float(n) | |
if is_significant(prob): | |
sig = 'significant: ' | |
else: | |
sig = 'NOT significant:' | |
print (" %s is %s %5.2f%c (%3d/%d) vs. %5.2f%c expected." % | |
(group['name'], sig, | |
freq, '%', | |
group['count'], n, | |
(100.0 * group['expected']), '%')) | |
print '' | |
print 'Pair-wise results:' | |
try: | |
from itertools import combinations | |
except ImportError: | |
def combinations(iterable, r): | |
# combinations('ABCD', 2) --> AB AC AD BC BD CD | |
# combinations(range(4), 3) --> 012 013 023 123 | |
pool = tuple(iterable) | |
n = len(pool) | |
if r > n: | |
return | |
indices = range(r) | |
yield tuple(pool[i] for i in indices) | |
while True: | |
for i in reversed(range(r)): | |
if indices[i] != i + n - r: | |
break | |
else: | |
return | |
indices[i] += 1 | |
for j in range(i+1, r): | |
indices[j] = indices[j-1] + 1 | |
yield tuple(pool[i] for i in indices) | |
pairs = {} | |
for pair in combinations(range(4), 2): | |
firstindex = pair[0] | |
secondindex = pair[1] | |
for group in data: | |
pairname = ''.join([group['name'][firstindex], | |
group['name'][secondindex]]) | |
if not pairname in pairs: pairs[pairname] = {'actual': 0, 'expected': 0} | |
pairs[pairname]['actual'] += group['count'] | |
pairs[pairname]['expected'] += group['expected'] | |
for pairname, pair in pairs.iteritems(): | |
prob = binom.pmf(pair['actual'], n, pair['expected']) | |
freq = 100.0 * float(pair['actual']) / float(n) | |
if is_significant(prob): | |
sig = 'significant: ' | |
else: | |
sig = 'NOT significant:' | |
print (" %s is %s %5.2f%c (%3d/%d) vs. %5.2f%c expected." % | |
(pairname, sig, | |
freq, '%', | |
pair['actual'], n, | |
(100.0 * pair['expected']), '%')) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment