-
-
Save mick001/38b1eb063bfa783c1b0c32a9cf38de45 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
set.seed(1) | |
# define some functions | |
## convert integer to binary | |
i2b <- function(integer, length=8) | |
as.numeric(intToBits(integer))[1:length] | |
## apply | |
int2bin <- function(integer, length=8) | |
t(sapply(integer, i2b, length=length)) | |
## sigmoid function | |
sigmoid <- function(x, k=1, x0=0) | |
1 / (1+exp( -k*(x-x0) )) | |
## sigmoid derivative | |
sigmoid_output_to_derivative <- function(x) | |
x*(1-x) | |
## tanh derivative | |
tanh_output_to_derivative <- function(x) | |
1-x^2 | |
# create training numbers | |
X1 = sample(0:1023, 100000, replace=TRUE) | |
X2 = sample(0:1023, 100000, replace=TRUE) | |
# create training response numbers | |
Y <- X1 + X2 | |
# convert to binary | |
X1b <- int2bin(X1, length=10) | |
X2b <- int2bin(X2, length=10) | |
Yb <- int2bin(Y, length=10) | |
# input variables | |
alpha = 0.1 | |
alpha_decay = 0.999 | |
momentum = 0.1 | |
init_weight = 1 | |
batch_size = 20 | |
input_dim = 2 | |
hidden_dim = 8 | |
output_dim = 1 | |
binary_dim = 10 | |
largest_number = 2^binary_dim | |
output_size = 100 | |
# initialise neural network weights | |
synapse_0_i = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_0_f = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_0_o = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_0_c = matrix(runif(n = input_dim *hidden_dim, min=-init_weight, max=init_weight), nrow=input_dim) | |
synapse_1 = matrix(runif(n = hidden_dim*output_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_i = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_f = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_o = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_h_c = matrix(runif(n = hidden_dim*hidden_dim, min=-init_weight, max=init_weight), nrow=hidden_dim) | |
synapse_b_1 = runif(n = output_dim, min=-init_weight, max=init_weight) | |
synapse_b_i = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
synapse_b_f = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
synapse_b_o = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
synapse_b_c = runif(n = hidden_dim, min=-init_weight, max=init_weight) | |
# initialise state cell | |
c_t_m1 = matrix(0, nrow=1, ncol = hidden_dim) | |
# initialise synapse updates | |
synapse_0_i_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_0_f_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_0_o_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_0_c_update = matrix(0, nrow = input_dim, ncol = hidden_dim) | |
synapse_1_update = matrix(0, nrow = hidden_dim, ncol = output_dim) | |
synapse_h_i_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_h_f_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_h_o_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_h_c_update = matrix(0, nrow = hidden_dim, ncol = hidden_dim) | |
synapse_b_1_update = rep(0, output_dim) | |
synapse_b_i_update = rep(0, hidden_dim) | |
synapse_b_f_update = rep(0, hidden_dim) | |
synapse_b_o_update = rep(0, hidden_dim) | |
synapse_b_c_update = rep(0, hidden_dim) | |
# training logic | |
for (j in 1:length(X1)) { | |
# select input variables | |
a = X1b[j,] | |
b = X2b[j,] | |
# response variable | |
c = Yb[j,] | |
# where we'll store our best guesss (binary encoded) | |
d = matrix(0, nrow = 1, ncol = binary_dim) | |
overallError = 0 | |
layer_2_deltas = matrix(0) | |
layer_1_values = matrix(0, nrow=1, ncol = hidden_dim) | |
# moving along the positions in the binary encoding | |
for (position in 1:binary_dim) { | |
# generate input and output | |
X = cbind(a[position],b[position]) | |
y = c[position] | |
# hidden layer (input ~+ prev_hidden) | |
i_t = sigmoid((X%*%synapse_0_i) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_i) + synapse_b_i) # add bias? | |
f_t = sigmoid((X%*%synapse_0_f) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_f) + synapse_b_f) # add bias? | |
o_t = sigmoid((X%*%synapse_0_o) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_o) + synapse_b_o) # add bias? | |
c_in_t = tanh( (X%*%synapse_0_c) + (layer_1_values[dim(layer_1_values)[1],] %*% synapse_h_c) + synapse_b_c) | |
c_t = (f_t * c_t_m1[dim(layer_1_values)[1],]) + (i_t * c_in_t) | |
layer_1 = o_t * tanh(c_t) | |
c_t_m1 = rbind(c_t_m1, c_t) | |
# output layer (new binary representation) | |
layer_2 = sigmoid(layer_1 %*% synapse_1 + synapse_b_1) | |
# did we miss?... if so, by how much? | |
layer_2_error = y - layer_2 | |
layer_2_deltas = rbind(layer_2_deltas, layer_2_error * sigmoid_output_to_derivative(layer_2)) | |
overallError = overallError + round(abs(layer_2_error)) | |
# decode estimate so we can print it out | |
d[position] = round(layer_2) | |
# store hidden layer so we can print it out | |
layer_1_values = rbind(layer_1_values, layer_1) | |
} | |
future_layer_1_i_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
future_layer_1_f_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
future_layer_1_o_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
future_layer_1_c_delta = matrix(0, nrow = 1, ncol = hidden_dim) | |
for (position in 1:binary_dim) { | |
X = cbind(a[binary_dim-(position-1)], b[binary_dim-(position-1)]) | |
layer_1 = layer_1_values[dim(layer_1_values)[1]-(position-1),] | |
prev_layer_1 = layer_1_values[dim(layer_1_values)[1]-position,] | |
# error at output layer | |
layer_2_delta = layer_2_deltas[dim(layer_2_deltas)[1]-(position-1),] | |
# error at hidden layer | |
layer_1_i_delta = (future_layer_1_i_delta %*% t(synapse_h_i) + layer_2_delta %*% t(synapse_1)) * | |
sigmoid_output_to_derivative(layer_1) | |
layer_1_f_delta = (future_layer_1_f_delta %*% t(synapse_h_f) + layer_2_delta %*% t(synapse_1)) * | |
sigmoid_output_to_derivative(layer_1) | |
layer_1_o_delta = (future_layer_1_o_delta %*% t(synapse_h_o) + layer_2_delta %*% t(synapse_1)) * | |
sigmoid_output_to_derivative(layer_1) | |
layer_1_c_delta = (future_layer_1_c_delta %*% t(synapse_h_c) + layer_2_delta %*% t(synapse_1)) * | |
sigmoid_output_to_derivative(layer_1) | |
# let's update all our weights so we can try again | |
synapse_1_update = synapse_1_update + matrix(layer_1) %*% layer_2_delta | |
synapse_h_i_update = synapse_h_i_update + matrix(prev_layer_1) %*% layer_1_i_delta | |
synapse_h_f_update = synapse_h_f_update + matrix(prev_layer_1) %*% layer_1_f_delta | |
synapse_h_o_update = synapse_h_o_update + matrix(prev_layer_1) %*% layer_1_o_delta | |
synapse_h_c_update = synapse_h_c_update + matrix(prev_layer_1) %*% layer_1_c_delta | |
synapse_0_i_update = synapse_0_i_update + t(X) %*% layer_1_i_delta | |
synapse_0_f_update = synapse_0_f_update + t(X) %*% layer_1_f_delta | |
synapse_0_o_update = synapse_0_o_update + t(X) %*% layer_1_o_delta | |
synapse_0_c_update = synapse_0_c_update + t(X) %*% layer_1_c_delta | |
synapse_b_1_update = synapse_b_1_update + layer_2_delta | |
synapse_b_i_update = synapse_b_i_update + layer_1_i_delta | |
synapse_b_f_update = synapse_b_f_update + layer_1_f_delta | |
synapse_b_o_update = synapse_b_o_update + layer_1_o_delta | |
synapse_b_c_update = synapse_b_c_update + layer_1_c_delta | |
future_layer_1_i_delta = layer_1_i_delta | |
future_layer_1_f_delta = layer_1_f_delta | |
future_layer_1_o_delta = layer_1_o_delta | |
future_layer_1_c_delta = layer_1_c_delta | |
} | |
if(j %% batch_size ==0) { | |
synapse_0_i = synapse_0_i + ( synapse_0_i_update * alpha ) | |
synapse_0_f = synapse_0_f + ( synapse_0_f_update * alpha ) | |
synapse_0_o = synapse_0_o + ( synapse_0_o_update * alpha ) | |
synapse_0_c = synapse_0_c + ( synapse_0_c_update * alpha ) | |
synapse_1 = synapse_1 + ( synapse_1_update * alpha ) | |
synapse_h_i = synapse_h_i + ( synapse_h_i_update * alpha ) | |
synapse_h_f = synapse_h_f + ( synapse_h_f_update * alpha ) | |
synapse_h_o = synapse_h_o + ( synapse_h_o_update * alpha ) | |
synapse_h_c = synapse_h_c + ( synapse_h_c_update * alpha ) | |
synapse_b_1 = synapse_b_1 + ( synapse_b_1_update * alpha ) | |
synapse_b_i = synapse_b_i + ( synapse_b_i_update * alpha ) | |
synapse_b_f = synapse_b_f + ( synapse_b_f_update * alpha ) | |
synapse_b_o = synapse_b_o + ( synapse_b_o_update * alpha ) | |
synapse_b_c = synapse_b_c + ( synapse_b_c_update * alpha ) | |
alpha = alpha * alpha_decay | |
synapse_0_i_update = synapse_0_i_update * momentum | |
synapse_0_f_update = synapse_0_f_update * momentum | |
synapse_0_o_update = synapse_0_o_update * momentum | |
synapse_0_c_update = synapse_0_c_update * momentum | |
synapse_1_update = synapse_1_update * momentum | |
synapse_h_i_update = synapse_h_i_update * momentum | |
synapse_h_f_update = synapse_h_f_update * momentum | |
synapse_h_o_update = synapse_h_o_update * momentum | |
synapse_h_c_update = synapse_h_c_update * momentum | |
synapse_b_1_update = synapse_b_1_update * momentum | |
synapse_b_i_update = synapse_b_i_update * momentum | |
synapse_b_f_update = synapse_b_f_update * momentum | |
synapse_b_o_update = synapse_b_o_update * momentum | |
synapse_b_c_update = synapse_b_c_update * momentum | |
} | |
# print out progress | |
if(j %% output_size ==0) { | |
print(paste("Error:", overallError," - alpha:",alpha)) | |
print(paste("A :", paste(a, collapse = " "))) | |
print(paste("B :", paste(b, collapse = " "))) | |
print(paste("Pred:", paste(d, collapse = " "))) | |
print(paste("True:", paste(c, collapse = " "))) | |
out = 0 | |
for (x in 1:length(d)) { | |
out[x] = rev(d)[x]*2^(x-1) } | |
print("----------------") | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment