This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
ezANOVA <- | |
function( | |
data | |
, dv | |
, wid | |
, within = NULL | |
, between = NULL | |
, observed = NULL | |
, diff = NULL | |
, reverse_diff = FALSE | |
, detailed = FALSE | |
){ | |
to_return = ezANOVA_main(data,dv,wid,within,between,observed,diff,reverse_diff) | |
######## | |
# Compute likelihood ratios | |
######## | |
n = length(levels(to_return$data[,names(to_return$data)==wid])) | |
involves_within = laply( | |
strsplit(to_return$ANOVA$Effect,':') | |
, function(x){ | |
any(x %in% as.character(within)) | |
} | |
) | |
involves_between = laply( | |
strsplit(to_return$ANOVA$Effect,':') | |
, function(x){ | |
any(x %in% as.character(between)) | |
} | |
) | |
between_error = to_return$ANOVA$SSd[1] | |
all_between_effects = sum(to_return$ANOVA$SSn[involves_between & !involves_within]) | |
between_null = between_error+all_between_effects | |
within_error = sum(to_return$ANOVA$SSd[!involves_between & involves_within]) | |
all_within_effects = sum(to_return$ANOVA$SSn[!involves_between & involves_within])+sum(to_return$ANOVA$SSn[involves_between & involves_within]) | |
within_null = within_error+all_within_effects | |
#compute the likelihood ratios for each effect | |
to_return$ANOVA$model_between = NA | |
to_return$ANOVA$model_within = NA | |
to_return$ANOVA$comparison_between = NA | |
to_return$ANOVA$comparison_within = NA | |
to_return$ANOVA$LR = NA | |
for(i in 2:nrow(to_return$ANOVA)){ | |
model_between = between_null | |
model_within = within_null | |
effect_split = strsplit(to_return$ANOVA$Effect[i], ':')[[1]] | |
if(length(effect_split)>1){ | |
from_terms = terms( | |
eval( | |
parse( | |
text = paste( | |
'1~' | |
, paste( | |
effect_split | |
, collapse = '*' | |
) | |
) | |
) | |
) | |
) | |
term_labels = attr(from_terms,'term.labels') | |
for(this_term_label in term_labels[1:(length(term_labels)-1)]){ | |
if(involves_within[to_return$ANOVA$Effect==this_term_label]){ | |
model_within = model_within - to_return$ANOVA$SSn[to_return$ANOVA$Effect==this_term_label] | |
}else{ | |
model_between = model_between - to_return$ANOVA$SSn[to_return$ANOVA$Effect==this_term_label] | |
} | |
} | |
} | |
comparison_between = model_between | |
comparison_within = model_within | |
if(involves_within[i]){ | |
model_within = model_within - to_return$ANOVA$SSn[i] | |
}else{ | |
model_between = model_between - to_return$ANOVA$SSn[i] | |
} | |
to_return$ANOVA$model_between[i] = model_between | |
to_return$ANOVA$model_within[i] = model_within | |
to_return$ANOVA$comparison_between[i] = comparison_between | |
to_return$ANOVA$comparison_within[i] = comparison_within | |
between_LR = (comparison_between/model_between)^(n/2) | |
within_LR = (comparison_within/model_within)^(to_return$ANOVA$DFd[i]/2) | |
to_return$ANOVA$LR[i] = between_LR*within_LR | |
} | |
#compute and apply corrections for complexity | |
aic = exp(-to_return$ANOVA$DFn) | |
bic = exp(-to_return$ANOVA$DFn)^(log(n)/2) | |
to_return$ANOVA$LLRa = log(aic*to_return$ANOVA$LR,base=10) | |
to_return$ANOVA$LLRb = log(bic*to_return$ANOVA$LR,base=10) | |
######## | |
# Compute effect size | |
######## | |
if(!is.null(observed)){ | |
obs = rep(F,nrow(to_return$ANOVA)) | |
for(i in as.character(observed)){ | |
obs = obs | str_detect(to_return$ANOVA$Effect,i) | |
} | |
obs_SSn1 = sum(to_return$ANOVA$SSn*obs) | |
obs_SSn2 = to_return$ANOVA$SSn*obs | |
}else{ | |
obs_SSn1 = 0 | |
obs_SSn2 = 0 | |
} | |
to_return$ANOVA$ges = to_return$ANOVA$SSn/(to_return$ANOVA$SSn+sum(unique(to_return$ANOVA$SSd))+obs_SSn1-obs_SSn2) | |
######## | |
# Final clean-up | |
######## | |
#remove the data from to_return | |
temp = names(to_return) | |
temp = temp[temp!='data'] | |
to_return = to_return[names(to_return)!='data'] | |
names(to_return) = temp | |
#if necessary, remove extra columns and the Intercept row from the anova | |
if(!detailed){ | |
to_return$ANOVA = to_return$ANOVA[,!(names(to_return$ANOVA) %in% c('SSn','SSd','between_LR','within_LR','LR','k','aic','bic'))] | |
to_return$ANOVA = to_return$ANOVA[2:nrow(to_return$ANOVA),] | |
} | |
#all done! | |
return(to_return) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment