Skip to content

Instantly share code, notes, and snippets.

View minesh1291's full-sized avatar
๐Ÿš–
On The Journey to Neverland

Minesh A. Jethva minesh1291

๐Ÿš–
On The Journey to Neverland
View GitHub Profile
@minesh1291
minesh1291 / cuda_install.md
Created October 29, 2023 02:46 — forked from denguir/cuda_install.md
Installation procedure for CUDA & cuDNN

How to install CUDA & cuDNN on Ubuntu 22.04

Install NVIDIA drivers

Update & upgrade

sudo apt update && sudo apt upgrade

Remove previous NVIDIA installation

@minesh1291
minesh1291 / train.py
Created August 14, 2023 17:23 — forked from kenqgu/train.py
Tutorial for multimodal_transformers
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./logs/model_name",
logging_dir="./logs/runs",
overwrite_output_dir=True,
do_train=True,
per_device_train_batch_size=32,
num_train_epochs=1,
evaluate_during_training=True,
@minesh1291
minesh1291 / model_loading.py
Created August 14, 2023 17:22 — forked from kenqgu/model_loading.py
Tutorial for multimodal_transformers
from multimodal_transformers.model import AutoModelWithTabular, TabularConfig
from transformers import AutoConfig
num_labels = len(np.unique(torch_dataset, labels))
config = AutoConfig.from_pretrained('bert-base-uncased')
tabular_config = TabularConfig(
num_labels=num_labels,
cat_feat_dim=torch_dataset.cat_feats.shape[1],
numerical_feat_dim=torch_dataset.numerical_feats.shape[1],
combine_feat_method='weighted_feature_sum_on_transformer_cat_and_numerical_feats',
@minesh1291
minesh1291 / data_loading.py
Created August 14, 2023 17:22 — forked from kenqgu/data_loading.py
Tutorial for multimodal_transformers
import pandas as pd
from multimodal_transformers.data import load_data
from transformers import AutoTokenizer
data_df = pd.read_csv('Womens Clothing E-Commerce Reviews.csv')
text_cols = ['Title', 'Review Text']
# The label col is expected to contain integers from 0 to N_classes - 1
label_col = 'Recommended IND'
categorical_cols = ['Clothing ID', 'Division Name', 'Department Name', 'Class Name']
numerical_cols = ['Rating', 'Age', 'Positive Feedback Count']
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@minesh1291
minesh1291 / torch.utils.data.dataset.py
Created March 24, 2023 15:30 — forked from epignatelli/torch.utils.data.dataset.py
pytorch Subset to return an instance of the parent Dataset, to be able to access the same attribute
"""
An implementation of the pytorch Subset that returns an instance of the original dataset with a reduced number of items.
This has two benefits:
- It allows to stil access the attributes of the Dataset class, such as methods, or properties.
- You can use the usual python index notation with slices to chunk the dataset, rather than creating a list of indices
"""
class Dataset(object):
def __init__(self, iterable):
self.items = iterable
import json
import numpy as np
from pycocotools import mask
from skimage import measure
ground_truth_binary_mask = np.array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
@minesh1291
minesh1291 / show-coco-annos.py
Created September 26, 2022 08:03 — forked from tangh/show-coco-annos.py
Show annotations in COCO dataset (multi-polygon and RLE format annos).
from pycocotools.coco import COCO
import numpy as np
import cv2
import os
coco_dataset_path = "/export/public/MS-COCO-2017/"
coco = COCO(coco_dataset_path + "annotations/instances_val2017.json")
import tensorflow as tf
def _bytestring_feature(list_of_bytestrings):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=list_of_bytestrings))
def _int_feature(list_of_ints): # int64
return tf.train.Feature(int64_list=tf.train.Int64List(value=list_of_ints))
@minesh1291
minesh1291 / convert.py
Created January 10, 2022 10:18 — forked from dschwertfeger/convert.py
Convert WAV files to TFRecord format
import argparse
import math
import os
import numpy as np
import pandas as pd
import tensorflow as tf
_BASE_DIR = os.path.dirname(os.path.abspath(__file__))