Last active
March 22, 2017 16:39
-
-
Save minoki/826ec60a7a17081074664fc6ebe001a8 to your computer and use it in GitHub Desktop.
Test programs for complex numbers in various languages
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <math.h> | |
#include <complex.h> | |
#if !defined(CMPLX) | |
# if defined(__clang__) | |
# define CMPLX(x,y) ((double _Complex){(x), (y)}) | |
# elif defined(__GNUC__) | |
# define CMPLX(x,y) __builtin_complex((double)(x), (double)(y)) | |
# endif | |
#endif | |
int main(int argc, char *argv[]) { | |
puts("C _Complex"); | |
printf("abs(1e300 + 1e300 i) = %.16g\n", cabs(CMPLX(1e300, 1e300))); | |
{ | |
double complex z = 1.0 / CMPLX(1e300, 1e300); | |
printf("1 / (1e300 + 1e300 i) = %.16g + %.16g i\n", creal(z), cimag(z)); | |
} | |
printf("abs(inf + nan i) = %g\n", cabs(CMPLX(INFINITY, NAN))); | |
{ | |
double complex z = CMPLX(1.0, 1.0) * CMPLX(INFINITY, NAN); | |
printf("(1 + 1 i) * (inf + nan i) = %g + %g i\n", creal(z), cimag(z)); | |
} | |
{ | |
double complex z = CMPLX(INFINITY, NAN) * CMPLX(INFINITY, NAN); | |
printf("(inf + nan i) * (inf + nan i) = %g + %g i\n", creal(z), cimag(z)); | |
} | |
{ | |
double complex z = 1.0 / CMPLX(INFINITY, NAN); | |
printf("1 / (inf + nan i) = %g + %g i\n", creal(z), cimag(z)); | |
} | |
{ | |
double complex z = 1.0 / CMPLX(0.0, 0.0); | |
printf("1 / (0 + 0 i) = %g + %g i\n", creal(z), cimag(z)); | |
} | |
{ | |
double complex z = CMPLX(INFINITY, NAN) / CMPLX(1.0, 2.0); | |
printf("(inf + nan i) / (1 + 2 i) = %g + %g i\n", creal(z), cimag(z)); | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <math.h> | |
#include <complex> | |
int main(int argc, char *argv[]) { | |
using std::complex; | |
puts("C++ std::complex"); | |
printf("abs(1e300 + 1e300 i) = %.16g\n", abs(complex<double>(1e300, 1e300))); | |
{ | |
complex<double> z = 1.0 / complex<double>(1e300, 1e300); | |
printf("1 / (1e300 + 1e300 i) = %.16g + %.16g i\n", real(z), imag(z)); | |
} | |
printf("abs(inf + nan i) = %g\n", abs(complex<double>(INFINITY, NAN))); | |
{ | |
complex<double> z = complex<double>(1.0, 1.0) * complex<double>(INFINITY, NAN); | |
printf("(1 + 1 i) * (inf + nan i) = %g + %g i\n", real(z), imag(z)); | |
} | |
{ | |
complex<double> z = complex<double>(INFINITY, NAN) * complex<double>(INFINITY, NAN); | |
printf("(inf + nan i) * (inf + nan i) = %g + %g i\n", real(z), imag(z)); | |
} | |
{ | |
complex<double> z = 1.0 / complex<double>(INFINITY, NAN); | |
printf("1 / (inf + nan i) = %g + %g i\n", real(z), imag(z)); | |
} | |
{ | |
complex<double> z = 1.0 / complex<double>(0.0, 0.0); | |
printf("1 / (0 + 0 i) = %g + %g i\n", real(z), imag(z)); | |
} | |
{ | |
complex<double> z = complex<double>(INFINITY, NAN) / complex<double>(1.0, 2.0); | |
printf("(inf + nan i) / (1 + 2 i) = %g + %g i\n", real(z), imag(z)); | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"fmt" | |
"math" | |
"math/cmplx" | |
) | |
func main() { | |
fmt.Println("Go") | |
fmt.Println("abs(1e300 + 1e300 i) =", cmplx.Abs(1e300+1e300i)) | |
fmt.Println("1 / (1e300 + 1e300 i) =", 1 / (1e300 + 1e300i)) | |
fmt.Println("abs(inf + nan i) =", cmplx.Abs(complex(math.Inf(0), math.NaN()))) | |
fmt.Println("(1 + 1 i) * (inf + nan i) =", complex(1, 1) * complex(math.Inf(0), math.NaN())) | |
fmt.Println("(inf + nan i) * (inf + nan i) =", complex(math.Inf(0), math.NaN()) * complex(math.Inf(0), math.NaN())) | |
fmt.Println("1 / (inf + nan i) =", 1 / complex(math.Inf(0), math.NaN())) | |
var zero = complex(0, 0) | |
fmt.Println("1 / (0 + 0 i) =", 1 / zero) | |
fmt.Println("(inf + nan i) / (1 + 2 i) =", complex(math.Inf(0), math.NaN()) / (1 + 2i)) | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Prelude | |
import Data.Complex | |
inf, nan :: Double | |
inf = 1 / 0 | |
nan = 0 / 0 | |
main = do | |
putStrLn "Haskell Data.Complex" | |
putStr "abs(1e300 + 1e300 i) = " | |
print $ magnitude (1e300 :+ 1e300) | |
putStr "1 / (1e300 + 1e300 i) = " | |
print $ 1 / (1e300 :+ 1e300) | |
putStr "abs(inf + nan i) = " | |
print $ magnitude (inf :+ nan) | |
putStr "(1 + 1 i) * (inf + nan i) = " | |
print $ (1 :+ 1) * (inf :+ nan) | |
putStr "(inf + nan i) * (inf + nan i) = " | |
print $ (inf :+ nan) * (inf :+ nan) | |
putStr "1 / (inf + nan i) = " | |
print $ 1 / (inf :+ nan) | |
putStr "1 / (0 + 0 i) = " | |
print $ 1 / (0 :+ 0) | |
putStr "(inf + nan i) / (1 + 2 i) = " | |
print $ (inf :+ nan) / (1 :+ 2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open Complex;; | |
open Printf;; | |
let print_complex z = printf "%g + %g i" z.re z.im;; | |
print_endline "OCaml Complex"; | |
print_string "abs(1e300 + 1e300 i) = "; | |
print_float (Complex.norm {re=1e300;im=1e300}); | |
print_newline (); | |
print_string "1 / (1e300 + 1e300 i) = "; | |
print_complex (Complex.inv {re=1e300;im=1e300}); | |
print_newline (); | |
print_string "hypot(inf, nan) = "; | |
print_float (hypot infinity nan); | |
print_newline (); | |
print_string "abs(inf + nan i) = "; | |
print_float (Complex.norm {re=infinity;im=nan}); | |
print_newline (); | |
print_string "(1 + 1 i) * (inf + nan i) = "; | |
print_complex (Complex.mul {re=1.0;im=1.0} {re=infinity;im=nan}); | |
print_newline (); | |
print_string "(inf + nan i) * (inf + nan i) = "; | |
print_complex (Complex.mul {re=infinity;im=nan} {re=infinity;im=nan}); | |
print_newline (); | |
print_string "1 / (inf + nan i) = "; | |
print_complex (Complex.div {re=1.0;im=0.0} {re=infinity;im=nan}); | |
print_newline (); | |
print_string "1 / (0 + 0 i) = "; | |
print_complex (Complex.div {re=1.0;im=0.0} {re=0.0;im=0.0}); | |
print_newline (); | |
print_string "(inf + nan i) / (1 + 2 i) = "; | |
print_complex (Complex.div {re=infinity;im=nan} {re=1.0;im=2.0}); | |
print_newline (); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import inf, nan | |
print("Python") | |
print("abs(1e300 + 1e300 i) =", abs(1e300 + 1e300j)) | |
print("1 / (1e300 + 1e300 i) =", 1 / (1e300 + 1e300j)) | |
print("abs(inf + nan i) =", abs(complex(inf, nan))) | |
print("(1 + 1 i) * (inf + nan i) =", (1 + 1j) * complex(inf, nan)) | |
print("(inf + nan i) * (inf + nan i) =", complex(inf, nan) * complex(inf, nan)) | |
print("1 / (inf + nan i) =", 1 * complex(inf, nan)) | |
# print(1 / complex(0, 0)) --> ZeroDivisionError: complex division by zero | |
print("(inf + nan i) / (1 + 2 i) =", complex(inf, nan) / complex(1, 2)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
puts "Ruby" | |
print "abs(1e300 + 1e300 i) = " | |
puts(Complex(1e300, 1e300).abs) | |
print "1 / (1e300 + 1e300 i) = " | |
puts(1 / Complex(1e300, 1e300)) | |
print "abs(inf + nan i) = " | |
puts(Complex(Float::INFINITY, Float::NAN).abs) | |
print "(1 + 1 i) * (inf + nan i) = " | |
puts(Complex(1, 1) * Complex(Float::INFINITY, Float::NAN)) | |
print "(inf + nan i) * (inf + nan i) = " | |
puts(Complex(Float::INFINITY, Float::NAN) * Complex(Float::INFINITY, Float::NAN)) | |
print "1 / (inf + nan i) = " | |
puts(1 / Complex(Float::INFINITY, Float::NAN)) | |
# puts(1 / Complex(0, 0)) --> divided by 0 (ZeroDivisionError) | |
print "(inf + nan i) / (1 + 2 i) = " | |
puts(Complex(Float::INFINITY, Float::NAN) / Complex(1, 2)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
extern crate num; | |
use num::Complex; | |
fn main() { | |
println!("Rust num::complex"); | |
println!("abs(1e300 + 1e300 i) = {:e}", Complex::new(1e300, 1e300).norm()); | |
{ | |
let z = 1f64 / Complex::new(1e300, 1e300); | |
println!("1 / (1e300 + 1e300 i) = {:e} + {:e} i", z.re, z.im); | |
} | |
let inf = std::f64::INFINITY; | |
let nan = std::f64::NAN; | |
println!("abs(inf + nan i) = {:e}", Complex::new(inf, nan).norm()); | |
{ | |
let z = Complex::new(1.0, 1.0) * Complex::new(inf, nan); | |
println!("(1 + 1 i) * (inf + nan i) = {:e} + {:e} i", z.re, z.im); | |
} | |
{ | |
let z = Complex::new(inf, nan) * Complex::new(inf, nan); | |
println!("(inf + nan i) * (inf + nan i) = {:e} + {:e} i", z.re, z.im); | |
} | |
{ | |
let z = 1.0 / Complex::new(inf, nan); | |
println!("1 / (inf + nan i) = {:e} + {:e} i", z.re, z.im); | |
} | |
{ | |
let z = 1f64 / Complex::new(0.0, 0.0); | |
println!("1 / (0 + 0 i) = {:e} + {:e} i", z.re, z.im); | |
} | |
{ | |
let z = Complex::new(inf, nan) / Complex::new(1.0, 2.0); | |
println!("(inf + nan i) / (1 + 2 i) = {:e} + {:e} i", z.re, z.im); | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import std.stdio; | |
import std.math; | |
void main() { | |
writeln("D cdouble"); | |
writeln("abs(1e300 + 1e300 i) = ", abs(1e300 + 1e300i)); | |
writeln("1 / (1e300 + 1e300 i) = ", 1.0 / (1e300 + 1e300i)); | |
writeln("abs(inf + nan i) = ", abs(real.infinity + real.nan * 1.0i)); | |
writeln("(1 + 1 i) * (inf + nan i) = ", (1.0 + 1.0i) * (real.infinity + real.nan * 1.0i)); | |
writeln("(inf + nan i) * (inf + nan i) = ", (real.infinity + real.nan * 1.0i) * (real.infinity + real.nan * 1.0i)); | |
writeln("1 / (inf + nan i) = ", 1.0 / (real.infinity + real.nan * 1.0i)); | |
writeln("1 / (0 + 0 i) = ", 1.0 / (0.0 + 0.0i)); | |
writeln("(inf + nan i) / (1 + 2 i) = ", (real.infinity + real.nan * 1.0i) / (1.0 + 2.0i)); | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import std.stdio; | |
import std.math; | |
import std.complex; | |
void main() { | |
writeln("D std.complex"); | |
writeln("abs(1e300 + 1e300 i) = ", abs(complex(1e300, 1e300))); | |
writeln("1 / (1e300 + 1e300 i) = ", 1.0 / complex(1e300, 1e300)); | |
writeln("abs(inf + nan i) = ", abs(complex(real.infinity, real.nan))); | |
writeln("(1 + 1 i) * (inf + nan i) = ", complex(1.0, 1.0) * complex(real.infinity, real.nan)); | |
writeln("(inf + nan i) * (inf + nan i) = ", complex(real.infinity, real.nan) * complex(real.infinity, real.nan)); | |
writeln("1 / (inf + nan i) = ", 1.0 / complex(real.infinity, real.nan)); | |
writeln("1 / (0 + 0 i) = ", 1.0 / complex(0.0, 0.0)); | |
writeln("(inf + nan i) / (1 + 2 i) = ", complex(real.infinity, real.nan) / complex(1.0, 2.0)); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment