Skip to content

Instantly share code, notes, and snippets.

@mjcreativeventures
Created February 15, 2016 04:49
Process twitter data to generate an output file of relationships between twitter account
import glob
import os
import json
import sys
from collections import defaultdict
users = defaultdict(lambda: { 'followers': 0 })
for f in glob.glob('twitter-users/*.json'):
data = json.load(file(f))
screen_name = data['screen_name']
users[screen_name] = { 'followers': data['followers_count'] }
SEED = 'TEDxSingapore'
def process_follower_list(screen_name, edges=[], depth=0, max_depth=2):
f = os.path.join('following', screen_name + '.csv')
if not os.path.exists(f):
return edges
followers = [line.strip().split('\t') for line in file(f)]
for follower_data in followers:
if len(follower_data) < 2:
continue
screen_name_2 = follower_data[1]
# use the number of followers for screen_name as the weight
weight = users[screen_name]['followers']
edges.append([screen_name, screen_name_2, weight])
if depth+1 < max_depth:
process_follower_list(screen_name_2, edges, depth+1, max_depth)
return edges
edges = process_follower_list(SEED, max_depth=3)
with open('twitter_network.csv', 'w') as outf:
edge_exists = {}
for edge in edges:
key = ','.join([str(x) for x in edge])
if not(key in edge_exists):
outf.write('%s\t%s\t%d\n' % (edge[0], edge[1], edge[2]))
edge_exists[key] = True
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment