Spooky Author Identification VotingClassifier ensemble
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
from sklearn import linear_model, metrics | |
from sklearn.ensemble import VotingClassifier | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.model_selection import StratifiedKFold | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn.pipeline import Pipeline | |
Y_COLUMN = "author" | |
TEXT_COLUMN = "text" | |
def test_pipeline(df, nlp_pipeline): | |
y = df[Y_COLUMN].copy() | |
X = pd.Series(df[TEXT_COLUMN]) | |
rskf = StratifiedKFold(n_splits=5, random_state=1) | |
losses = [] | |
accuracies = [] | |
for train_index, test_index in rskf.split(X, y): | |
X_train, X_test = X[train_index], X[test_index] | |
y_train, y_test = y[train_index], y[test_index] | |
nlp_pipeline.fit(X_train, y_train) | |
losses.append(metrics.log_loss(y_test, nlp_pipeline.predict_proba(X_test))) | |
accuracies.append(metrics.accuracy_score(y_test, nlp_pipeline.predict(X_test))) | |
print("kfolds log losses: {0}, mean log loss: {1} mean accuracy: {2}".format( | |
str([str(round(x, 3)) for x in sorted(losses)]), | |
round(np.mean(losses), 3), | |
round(np.mean(accuracies), 3) | |
)) | |
unigram_log_pipe = Pipeline([ | |
('cv', CountVectorizer()), | |
('logreg', linear_model.LogisticRegression()) | |
]) | |
ngram_pipe = Pipeline([ | |
('cv', CountVectorizer(ngram_range=(1, 2))), | |
('mnb', MultinomialNB()) | |
]) | |
classifiers = [ | |
("ngram", ngram_pipe), | |
("unigram", unigram_log_pipe), | |
] | |
mixed_pipe = Pipeline([ | |
("voting", VotingClassifier(classifiers, voting="soft")) | |
]) | |
train_df = pd.read_csv("train.csv", usecols=[Y_COLUMN, TEXT_COLUMN]) | |
test_pipeline(train_df, mixed_pipe) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment