Skip to content

Instantly share code, notes, and snippets.

@mogproject
Last active July 4, 2024 22:11
Show Gist options
  • Save mogproject/4623398934bd08f1914fb67662354a85 to your computer and use it in GitHub Desktop.
Save mogproject/4623398934bd08f1914fb67662354a85 to your computer and use it in GitHub Desktop.
CSSDM24

Poset Inequalities

Day 3

Problem 1

Recall: $\displaystyle e(P-y) = \sum_{C \in \mathcal{C}\colon y\in C} |\{f \in \mathcal{E}(P) : \Phi(f) = C\}|$.

Then,

$$\displaystyle \begin{align*} e(P-y) &= \sum_{C \in \mathcal{C}\colon y\in C} |\{f \in \mathcal{E}(P): \Phi(f) = C\}|\\\ &=\sum_{C \in \mathcal{C}\colon y\in C} \sum_{f \in \mathcal{E}(P)}\begin{cases} 1 \quad\text{ if } \Phi(f)=C\\\ 0 \quad\text{ otherwise} \end{cases} \\\ &= \sum_{f \in \mathcal{E}(P)} \begin{cases} 1 \quad\text{ if } y \in \Phi(f)\\\ 0 \quad\text{ otherwise} \end{cases} \end{align*}$$

Hence,

$$\begin{align*} e(P-y)e(Q-y) &= \left(\sum_{f \in \mathcal{E}(P)} \begin{cases} 1 \quad\text{ if } y \in \Phi(f)\\\ 0 \quad\text{ otherwise} \end{cases} \right) \left(\sum_{g \in \mathcal{E}(Q)} \begin{cases} 1 \quad\text{ if } y \in \Phi(g)\\\ 0 \quad\text{ otherwise} \end{cases} \right)\\\ &= \sum_{f \in \mathcal{E}(P)}\sum_{g \in \mathcal{E}(Q)} \begin{cases} 1 \quad\text{ if } y \in \Phi(f) \cap \Phi(g)\\\ 0 \quad\text{ otherwise} \end{cases} \end{align*}$$

Now,

$$\begin{align*} \sum_{y \in X}e(P-y)e(Q-y) &= \sum_{y \in X}\sum_{f \in \mathcal{E}(P)}\sum_{g \in \mathcal{E}(Q)} \begin{cases} 1 \quad\text{ if } y \in \Phi(f) \cap \Phi(g)\\\ 0 \quad\text{ otherwise} \end{cases}\\\ &= \sum_{f \in \mathcal{E}(P)}\sum_{g \in \mathcal{E}(Q)}\sum_{y \in X} \begin{cases} 1 \quad\text{ if } y \in \Phi(f) \cap \Phi(g)\\\ 0 \quad\text{ otherwise} \end{cases}\\\ &= \sum_{f \in \mathcal{E}(P)}\sum_{g \in \mathcal{E}(Q)}|\Phi(f) \cap \Phi(g)|\\\ &\leq \sum_{f \in \mathcal{E}(P)}\sum_{g \in \mathcal{E}(Q)}k &\text{(Chains intersect at most $k$ elements.)}\\\ &= k \cdot e(P) e(Q) \end{align*}$$

Induction:

base case $n=k$: $\displaystyle e(P)e(Q) \geq \frac{n!}{k!k^{n-k}} = \frac{n!}{n!n^0}=1$

inductive step $n>k$:

$$\begin{align*} e(P)e(Q) &\geq \frac{1}{k} \sum_{y \in X}e(P-y)e(Q-y)\\\ &\geq \frac{1}{k} \sum_{y \in X}\frac{(n-1)!}{k! k^{(n-1)-k}}\\\ &= \frac{n}{k}\cdot\frac{(n-1)!}{k! k^{(n-1)-k}}\\\ &= \frac{n!}{k!k^{n-k}} \end{align*}$$

Problem 2

  • Chains in a poset form cliques in its comparability graph.
  • If $G(P_1)$ is isomorphic to $G(P_2)$, then their cliques are also isomorphic.
  • The chain polytope of a poset only depends on the set of its chains.
  • $\text{vol}(\mathcal{C}_{P_1}) = \text{vol}(\mathcal{C}_{P_2}) = \frac{e(P_1)}{n!} = \frac{e(P_2)}{n!}$.

Problem 3

All vertices have integral coordinates.

  • Vertices of $\mathcal{O}_P$: ${f: X \to {0,1}\text{ order preserving}}$
  • Vertices of $\mathcal{C}_P$: for each chain, at most $1$ axis with value $1$.

Not sure what to write.

Details: https://math.mit.edu/~rstan/pubs/pubfiles/66.pdf

Problem 4

  • We sort the points by $x$-values to obtain rank $\mu_x: X \to [n]$ and similarly by $y$-values obtain rank $\mu_y: X \to [n]$.
  • Ties are broken arbitrarily.
  • $\sigma$ is obtained by $\sigma(\mu_x(p))=\mu_y(p)$ for every $p \in X$.

Now, we show the isomorphism.

TBD

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment