Skip to content

Instantly share code, notes, and snippets.

@mohdsanadzakirizvi
Created January 10, 2020 11:32
Show Gist options
  • Save mohdsanadzakirizvi/06726f8e53fb7674d7fcd9d1c66dfb46 to your computer and use it in GitHub Desktop.
Save mohdsanadzakirizvi/06726f8e53fb7674d7fcd9d1c66dfb46 to your computer and use it in GitHub Desktop.
#dictionary that contains pos tags and their explanations
pos_dict = {
'CC': 'coordinating conjunction','CD': 'cardinal digit','DT': 'determiner',
'EX': 'existential there (like: \"there is\" ... think of it like \"there exists\")',
'FW': 'foreign word','IN': 'preposition/subordinating conjunction','JJ': 'adjective \'big\'',
'JJR': 'adjective, comparative \'bigger\'','JJS': 'adjective, superlative \'biggest\'',
'LS': 'list marker 1)','MD': 'modal could, will','NN': 'noun, singular \'desk\'',
'NNS': 'noun plural \'desks\'','NNP': 'proper noun, singular \'Harrison\'',
'NNPS': 'proper noun, plural \'Americans\'','PDT': 'predeterminer \'all the kids\'',
'POS': 'possessive ending parent\'s','PRP': 'personal pronoun I, he, she',
'PRP$': 'possessive pronoun my, his, hers','RB': 'adverb very, silently,',
'RBR': 'adverb, comparative better','RBS': 'adverb, superlative best',
'RP': 'particle give up','TO': 'to go \'to\' the store.','UH': 'interjection errrrrrrrm',
'VB': 'verb, base form take','VBD': 'verb, past tense took',
'VBG': 'verb, gerund/present participle taking','VBN': 'verb, past participle taken',
'VBP': 'verb, sing. present, non-3d take','VBZ': 'verb, 3rd person sing. present takes',
'WDT': 'wh-determiner which','WP': 'wh-pronoun who, what','WP$': 'possessive wh-pronoun whose',
'WRB': 'wh-abverb where, when','QF' : 'quantifier, bahut, thoda, kam (Hindi)','VM' : 'main verb',
'PSP' : 'postposition, common in indian langs','DEM' : 'demonstrative, common in indian langs'
}
#extract parts of speech
def extract_pos(doc):
parsed_text = {'word':[], 'pos':[], 'exp':[]}
for sent in doc.sentences:
for wrd in sent.words:
if wrd.pos in pos_dict.keys():
pos_exp = pos_dict[wrd.pos]
else:
pos_exp = 'NA'
parsed_text['word'].append(wrd.text)
parsed_text['pos'].append(wrd.pos)
parsed_text['exp'].append(pos_exp)
#return a dataframe of pos and text
return pd.DataFrame(parsed_text)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment