# Define UMAP | |
brain_umap = umap.UMAP(random_state=999, n_neighbors=30, min_dist=.25) | |
# Fit UMAP and extract latent vars 1-2 | |
embedding = pd.DataFrame(brain_umap.fit_transform(matrix), columns = ['UMAP1','UMAP2']) | |
# Produce sns.scatterplot and pass metadata.subclasses as color | |
sns_plot = sns.scatterplot(x='UMAP1', y='UMAP2', data=embedding, | |
hue=metadata.subclass_label.to_list(), | |
alpha=.1, linewidth=0, s=1) | |
# Adjust legend | |
sns_plot.legend(loc='center left', bbox_to_anchor=(1, .5)) | |
# Save PNG | |
sns_plot.figure.savefig('umap_scatter.png', bbox_inches='tight', dpi=500) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment