This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Wordcloud | |
# Remove potential bots w/ > 100 tweets in the dataset | |
bots <- rownames(rtStats)[which(rtStats$num_tweets > 100)] | |
reducedTweet <- allTweets[!allTweets$screen_name %in% bots,] | |
reducedTweet$text <- texts(reducedTweet$text) %>% | |
iconv(from = "UTF-8", to = "ASCII", sub = "") %>% | |
gsub(pattern = "<[A-Z+0-9]+>", repl = " ") | |
# Tokenize words | |
tkn <- tokens(reducedTweet$text, | |
remove_twitter = T, | |
remove_separators = T, | |
remove_symbols = T, | |
remove_punct = T, | |
remove_url = T, | |
remove_hyphens = T, | |
remove_numbers = T) | |
# Remove stopwords and stem words | |
gotDfm <- dfm(tkn, tolower = T, | |
remove = stopwords("en"), | |
stem = T) | |
# Remove irrelevant terms incl. single-character words | |
badWords <- c("game", "throne", "gameofthron", "got", | |
"watch", "episod", "season", "show", | |
"just", "like") | |
gotDfm <- gotDfm[,nchar(colnames(gotDfm)) > 1 & | |
!colnames(gotDfm) %in% badWords] | |
epAirTime <- ymd_hms("2019-04-14 21:00:00", tz = "EST") + dweeks(0:5) | |
wcLists <- lapply(1:6, function(x){ | |
idx <- tweetReduced$created_at > epAirTime[x] + dhours(2) & | |
tweetReduced$created_at < epAirTime[x] + ddays(4) | |
return(gotDfm[idx,]) | |
}) | |
par(mar = rep(0, 4)) | |
for(i in 1:length(wcLists)){ | |
set.seed(100) | |
textplot_wordcloud(wcLists[[i]], | |
max_words = 100) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment