Skip to content

Instantly share code, notes, and snippets.

Last active August 11, 2023 11:22
  • Star 46 You must be signed in to star a gist
  • Fork 47 You must be signed in to fork a gist
Star You must be signed in to star a gist
Save monperrus/7157717 to your computer and use it in GitHub Desktop.
Java implementation of the Apriori algorithm for mining frequent itemsets
import java.util.*;
/** The class encapsulates an implementation of the Apriori algorithm
* to compute frequent itemsets.
* Datasets contains integers (>=0) separated by spaces, one transaction by line, e.g.
* 1 2 3
* 0 9
* 1 9
* Usage with the command line :
* $ java mining.Apriori fileName support
* $ java mining.Apriori /tmp/data.dat 0.8
* $ java mining.Apriori /tmp/data.dat 0.8 > frequent-itemsets.txt
* For a full library, see SPMF
* @author Martin Monperrus, University of Darmstadt, 2010
* @author Nathan Magnus and Su Yibin, under the supervision of Howard Hamilton, University of Regina, June 2009.
* @copyright GNU General Public License v3
* No reproduction in whole or part without maintaining this copyright notice
* and imposing this condition on any subsequent users.
public class Apriori extends Observable {
public static void main(String[] args) throws Exception {
Apriori ap = new Apriori(args);
/** the list of current itemsets */
private List<int[]> itemsets ;
/** the name of the transcation file */
private String transaFile;
/** number of different items in the dataset */
private int numItems;
/** total number of transactions in transaFile */
private int numTransactions;
/** minimum support for a frequent itemset in percentage, e.g. 0.8 */
private double minSup;
/** by default, Apriori is used with the command line interface */
private boolean usedAsLibrary = false;
/** This is the main interface to use this class as a library */
public Apriori(String[] args, Observer ob) throws Exception
usedAsLibrary = true;
/** generates the apriori itemsets from a file
* @param args configuration parameters: args[0] is a filename, args[1] the min support (e.g. 0.8 for 80%)
public Apriori(String[] args) throws Exception
/** starts the algorithm after configuration */
private void go() throws Exception {
//start timer
long start = System.currentTimeMillis();
// first we generate the candidates of size 1
int itemsetNumber=1; //the current itemset being looked at
int nbFrequentSets=0;
while (itemsets.size()>0)
log("Found "+itemsets.size()+" frequent itemsets of size " + itemsetNumber + " (with support "+(minSup*100)+"%)");;
//display the execution time
long end = System.currentTimeMillis();
log("Execution time is: "+((double)(end-start)/1000) + " seconds.");
log("Found "+nbFrequentSets+ " frequents sets for support "+(minSup*100)+"% (absolute "+Math.round(numTransactions*minSup)+")");
/** triggers actions if a frequent item set has been found */
private void foundFrequentItemSet(int[] itemset, int support) {
if (usedAsLibrary) {
else {System.out.println(Arrays.toString(itemset) + " ("+ ((support / (double) numTransactions))+" "+support+")");}
/** outputs a message in Sys.err if not used as library */
private void log(String message) {
if (!usedAsLibrary) {
/** computes numItems, numTransactions, and sets minSup */
private void configure(String[] args) throws Exception
// setting transafile
if (args.length!=0) transaFile = args[0];
else transaFile = "chess.dat"; // default
// setting minsupport
if (args.length>=2) minSup=(Double.valueOf(args[1]).doubleValue());
else minSup = .8;// by default
if (minSup>1 || minSup<0) throw new Exception("minSup: bad value");
// going thourgh the file to compute numItems and numTransactions
numItems = 0;
BufferedReader data_in = new BufferedReader(new FileReader(transaFile));
while (data_in.ready()) {
String line=data_in.readLine();
if (line.matches("\\s*")) continue; // be friendly with empty lines
StringTokenizer t = new StringTokenizer(line," ");
while (t.hasMoreTokens()) {
int x = Integer.parseInt(t.nextToken());
if (x+1>numItems) numItems=x+1;
/** outputs the current configuration
private void outputConfig() {
//output config info to the user
log("Input configuration: "+numItems+" items, "+numTransactions+" transactions, ");
log("minsup = "+minSup*100+"%");
/** puts in itemsets all sets of size 1,
* i.e. all possibles items of the datasets
private void createItemsetsOfSize1() {
itemsets = new ArrayList<int[]>();
for(int i=0; i<numItems; i++)
int[] cand = {i};
* if m is the size of the current itemsets,
* generate all possible itemsets of size n+1 from pairs of current itemsets
* replaces the itemsets of itemsets by the new ones
private void createNewItemsetsFromPreviousOnes()
// by construction, all existing itemsets have the same size
int currentSizeOfItemsets = itemsets.get(0).length;
log("Creating itemsets of size "+(currentSizeOfItemsets+1)+" based on "+itemsets.size()+" itemsets of size "+currentSizeOfItemsets);
HashMap<String, int[]> tempCandidates = new HashMap<String, int[]>(); //temporary candidates
// compare each pair of itemsets of size n-1
for(int i=0; i<itemsets.size(); i++)
for(int j=i+1; j<itemsets.size(); j++)
int[] X = itemsets.get(i);
int[] Y = itemsets.get(j);
assert (X.length==Y.length);
//make a string of the first n-2 tokens of the strings
int [] newCand = new int[currentSizeOfItemsets+1];
for(int s=0; s<newCand.length-1; s++) {
newCand[s] = X[s];
int ndifferent = 0;
// then we find the missing value
for(int s1=0; s1<Y.length; s1++)
boolean found = false;
// is Y[s1] in X?
for(int s2=0; s2<X.length; s2++) {
if (X[s2]==Y[s1]) {
found = true;
if (!found){ // Y[s1] is not in X
// we put the missing value at the end of newCand
newCand[newCand.length -1] = Y[s1];
// we have to find at least 1 different, otherwise it means that we have two times the same set in the existing candidates
if (ndifferent==1) {
// HashMap does not have the correct "equals" for int[] :-(
// I have to create the hash myself using a String :-(
// I use Arrays.toString to reuse equals and hashcode of String
//set the new itemsets
itemsets = new ArrayList<int[]>(tempCandidates.values());
log("Created "+itemsets.size()+" unique itemsets of size "+(currentSizeOfItemsets+1));
/** put "true" in trans[i] if the integer i is in line */
private void line2booleanArray(String line, boolean[] trans) {
Arrays.fill(trans, false);
StringTokenizer stFile = new StringTokenizer(line, " "); //read a line from the file to the tokenizer
//put the contents of that line into the transaction array
while (stFile.hasMoreTokens())
int parsedVal = Integer.parseInt(stFile.nextToken());
trans[parsedVal]=true; //if it is not a 0, assign the value to true
/** passes through the data to measure the frequency of sets in {@link itemsets},
* then filters thoses who are under the minimum support (minSup)
private void calculateFrequentItemsets() throws Exception
log("Passing through the data to compute the frequency of " + itemsets.size()+ " itemsets of size "+itemsets.get(0).length);
List<int[]> frequentCandidates = new ArrayList<int[]>(); //the frequent candidates for the current itemset
boolean match; //whether the transaction has all the items in an itemset
int count[] = new int[itemsets.size()]; //the number of successful matches, initialized by zeros
// load the transaction file
BufferedReader data_in = new BufferedReader(new InputStreamReader(new FileInputStream(transaFile)));
boolean[] trans = new boolean[numItems];
// for each transaction
for (int i = 0; i < numTransactions; i++) {
// boolean[] trans = extractEncoding1(data_in.readLine());
String line = data_in.readLine();
line2booleanArray(line, trans);
// check each candidate
for (int c = 0; c < itemsets.size(); c++) {
match = true; // reset match to false
// tokenize the candidate so that we know what items need to be
// present for a match
int[] cand = itemsets.get(c);
//int[] cand = candidatesOptimized[c];
// check each item in the itemset to see if it is present in the
// transaction
for (int xx : cand) {
if (trans[xx] == false) {
match = false;
if (match) { // if at this point it is a match, increase the count
//log(Arrays.toString(cand)+" is contained in trans "+i+" ("+line+")");
for (int i = 0; i < itemsets.size(); i++) {
// if the count% is larger than the minSup%, add to the candidate to
// the frequent candidates
if ((count[i] / (double) (numTransactions)) >= minSup) {
//else log("-- Remove candidate: "+ Arrays.toString(candidates.get(i)) + " is: "+ ((count[i] / (double) numTransactions)));
//new candidates are only the frequent candidates
itemsets = frequentCandidates;
Copy link

I forked this code and added association rules to it enjoy ;)
My Forked

can you please share your file again? It seems that it doesn't exist anymore

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment