Skip to content

Instantly share code, notes, and snippets.

@mostaphaRoudsari
Last active July 12, 2017 00:12
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save mostaphaRoudsari/1bcd4e9a0eac09013a9c22366ee1d3ce to your computer and use it in GitHub Desktop.
Save mostaphaRoudsari/1bcd4e9a0eac09013a9c22366ee1d3ce to your computer and use it in GitHub Desktop.
code to test gendaylit against the python version
#define _USE_MATH_DEFINES
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
float coeff_perez[] = {
1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,
0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,-1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,
6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,-1.1000,-0.2515,
0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,
-2.6204,-0.0156,0.1597,0.4199,-0.5562,-0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,
33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,-0.6000,
-0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,
1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,-1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,
14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,-1.0000,
0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,
0.2656,1.0468,-0.3788,-2.4517,1.4656,-1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,
-14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
float defangle_theta[] = {
84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72,
72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60,
60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
float defangle_phi[] = {
0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264,
276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180,
192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105,
120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75,
90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60,
80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210,
240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
/* Perez sky parametrization: epsilon and delta calculations from the direct and diffuse irradiances */
double sky_brightness();
double sky_clearness();
double sunzenith;
double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]);
double radians(double degres);
void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z);
double integ_lv(float *lv,float *theta);
static int get_numlin(float epsilon);
void computesky();
void check_parametrization();
const double AU = 149597890E3;
const double solar_constant_e = 1367; /* solar constant W/m^2 */
const double solar_constant_l = 127500; /* solar constant lux */
const double half_sun_angle = 0.2665;
const double half_direct_angle = 2.85;
const double skyclearinf = 1.0; /* limitations for the variation of the Perez parameters */
const double skyclearsup = 12.01;
const double skybriginf = 0.01;
const double skybrigsup = 0.6;
const double WHTEFFICACY = 179.;
double skyclearness = 0;
double skybrightness = 0;
double sunzenith, daynumber, atm_preci_water=2;
double diffuseilluminance, directilluminance, diffuseirradiance, directirradiance, globalirradiance;
double glob_h_diffuse_effi_PEREZ();
double direct_n_effi_PEREZ();
/* astronomy and geometry*/
double get_eccentricity();
double air_mass();
int main() {
computesky();
}
void computesky(){
float *lv_mod; /* 145 luminance values */
float *theta_o, *phi_o;
double dzeta, gamma;
if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
{
fprintf(stderr,"Out of memory in function main");
exit(1);
}
/* read the angles */
theta_o = defangle_theta;
phi_o = defangle_phi;
int j;
double solarradiance;
sunzenith = 88.2;
double diffnormalization;
daynumber = 1;
directirradiance = 22;
diffuseirradiance = 10;
/* parameters for the perez model */
skybrightness = sky_brightness();
skyclearness = sky_clearness();
check_parametrization();
diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
directilluminance = directirradiance*direct_n_effi_PEREZ();
// check_illuminances();
/*calculation of the modelled luminance */
for (j=0;j<145;j++)
{
theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
*(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
// fprintf(stderr,"theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j));
}
diffnormalization = integ_lv(lv_mod, theta_o);
diffnormalization = diffuseilluminance/diffnormalization/WHTEFFICACY;
solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY;
fprintf(stderr,"solarradiance,: %f", solarradiance);
}
/*check the range of epsilon and delta indexes of the perez parametrization*/
void check_parametrization()
{
if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
{
/* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
if (skyclearness<skyclearinf){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */
skyclearness=skyclearinf;
}
if (skyclearness>skyclearsup){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */
skyclearness=skyclearsup-0.001;
}
if (skybrightness<skybriginf){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */
skybrightness=skybriginf;
}
if (skybrightness>skybrigsup){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */
skybrightness=skybrigsup;
}
return; }
else return;
}
/* sky luminance perez model */
double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
{
float x[5][4];
int i,j,num_lin;
double c_perez[5];
if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
{
fprintf(stderr,"Error: epsilon out of range in function calc_rel_lum_perez!\n");
exit(1);
}
/* correction de modele de Perez solar energy ...*/
if ( (epsilon > 1.065) && (epsilon < 2.8) )
{
if ( Delta < 0.2 ) Delta = 0.2;
}
num_lin = get_numlin(epsilon);
for (i=0;i<5;i++)
for (j=0;j<4;j++)
{
x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
/* fprintf(stderr,"x %d %d vaut %f\n",i,j,x[i][j]); */
}
if (num_lin)
{
for (i=0;i<5;i++)
c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
}
else
{
c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
}
return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) *
(1 + c_perez[2]*exp(c_perez[3]*gamma) +
c_perez[4]*cos(gamma)*cos(gamma) );
}
/* degrees into radians */
double radians(double degres)
{
return degres*M_PI/180.0;
}
/* calculation of the angles dzeta and gamma */
void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
{
*dzeta = theta; /* dzeta = phi */
if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) )
*gamma = 0;
else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
{
printf("error in calculation of gamma (angle between point and sun");
exit(1);
}
else
*gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
}
double integ_lv(float *lv,float *theta)
{
int i;
double buffer=0.0;
for (i=0;i<145;i++)
{
buffer += (*(lv+i))*cos(radians(*(theta+i)));
}
return buffer*2*M_PI/144;
}
static int get_numlin(float epsilon)
{
if (epsilon < 1.065)
return 0;
else if (epsilon < 1.230)
return 1;
else if (epsilon < 1.500)
return 2;
else if (epsilon < 1.950)
return 3;
else if (epsilon < 2.800)
return 4;
else if (epsilon < 4.500)
return 5;
else if (epsilon < 6.200)
return 6;
return 7;
}
/* Perez sky's brightness */
double sky_brightness()
{
double value;
value = diffuseirradiance * air_mass() / ( solar_constant_e*get_eccentricity());
return(value);
}
/* Perez sky's clearness */
double sky_clearness()
{
double value;
value = ( (diffuseirradiance + directirradiance)/(diffuseirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ;
return(value);
}
/* global horizontal diffuse efficacy model, according to PEREZ */
double glob_h_diffuse_effi_PEREZ()
{
double value;
double category_bounds[10], a[10], b[10], c[10], d[10];
int category_total_number, category_number, i;
check_parametrization();
/*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */
/* initialize category bounds (clearness index bounds) */
category_total_number = 8;
//XXX: category_bounds > 0.1
category_bounds[1] = 1;
category_bounds[2] = 1.065;
category_bounds[3] = 1.230;
category_bounds[4] = 1.500;
category_bounds[5] = 1.950;
category_bounds[6] = 2.800;
category_bounds[7] = 4.500;
category_bounds[8] = 6.200;
category_bounds[9] = 12.01;
/* initialize model coefficients */
a[1] = 97.24;
a[2] = 107.22;
a[3] = 104.97;
a[4] = 102.39;
a[5] = 100.71;
a[6] = 106.42;
a[7] = 141.88;
a[8] = 152.23;
b[1] = -0.46;
b[2] = 1.15;
b[3] = 2.96;
b[4] = 5.59;
b[5] = 5.94;
b[6] = 3.83;
b[7] = 1.90;
b[8] = 0.35;
c[1] = 12.00;
c[2] = 0.59;
c[3] = -5.53;
c[4] = -13.95;
c[5] = -22.75;
c[6] = -36.15;
c[7] = -53.24;
c[8] = -45.27;
d[1] = -8.91;
d[2] = -3.95;
d[3] = -8.77;
d[4] = -13.90;
d[5] = -23.74;
d[6] = -28.83;
d[7] = -14.03;
d[8] = -7.98;
category_number = -1;
for (i=1; i<=category_total_number; i++)
{
if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
category_number = i;
}
if (category_number == -1) {
fprintf(stderr, "Warning: sky clearness (= %.3f) too high, printing error sky\n", skyclearness);
exit(0);
}
value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) +
d[category_number]*log(skybrightness);
return(value);
}
/* direct normal efficacy model, according to PEREZ */
double direct_n_effi_PEREZ()
{
double value;
double category_bounds[10], a[10], b[10], c[10], d[10];
int category_total_number, category_number, i;
/*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");*/
/* initialize category bounds (clearness index bounds) */
category_total_number = 8;
category_bounds[1] = 1;
category_bounds[2] = 1.065;
category_bounds[3] = 1.230;
category_bounds[4] = 1.500;
category_bounds[5] = 1.950;
category_bounds[6] = 2.800;
category_bounds[7] = 4.500;
category_bounds[8] = 6.200;
category_bounds[9] = 12.1;
/* initialize model coefficients */
a[1] = 57.20;
a[2] = 98.99;
a[3] = 109.83;
a[4] = 110.34;
a[5] = 106.36;
a[6] = 107.19;
a[7] = 105.75;
a[8] = 101.18;
b[1] = -4.55;
b[2] = -3.46;
b[3] = -4.90;
b[4] = -5.84;
b[5] = -3.97;
b[6] = -1.25;
b[7] = 0.77;
b[8] = 1.58;
c[1] = -2.98;
c[2] = -1.21;
c[3] = -1.71;
c[4] = -1.99;
c[5] = -1.75;
c[6] = -1.51;
c[7] = -1.26;
c[8] = -1.10;
d[1] = 117.12;
d[2] = 12.38;
d[3] = -8.81;
d[4] = -4.56;
d[5] = -6.16;
d[6] = -26.73;
d[7] = -34.44;
d[8] = -8.29;
for (i=1; i<=category_total_number; i++)
{
if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
category_number = i;
}
value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness;
if (value < 0) value = 0;
return(value);
}
/* enter sunzenith angle (degrees) return relative air mass (double) */
double air_mass()
{
double m;
if (sunzenith>90)
{
fprintf(stderr, "Warning: air mass has reached the maximal value\n");
sunzenith=90;
}
m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
return(m);
}
double get_eccentricity()
{
double day_angle;
double E0;
day_angle = 2*M_PI*(daynumber -1)/365;
E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+
0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
return (E0);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment