Last active
March 27, 2017 11:58
-
-
Save mountain/bdb9a8bba63926e04827b476816ac50e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import numpy as np | |
import sys | |
import keras | |
from keras.layers import Input, Dense | |
from keras.models import Model | |
def TRUE(p, q): | |
return np.repeat(1.0, p.size) | |
def NOR(p, q): | |
return np.round((1 - np.round(p)) * (1 - np.round(q))) > 0.0 | |
def XQ(p, q): | |
return np.round((1 - np.round(p)) * np.round(q)) > 0.0 | |
def NEGP(p, q): | |
return np.round(1 - np.round(p)) > 0.0 | |
def CNIMP(p, q): | |
return np.round(np.round(p) * (1 - np.round(q))) > 0.0 | |
def NEGQ(p, q): | |
return np.round(1 - np.round(q)) > 0.0 | |
def XOR(p, q): | |
return np.round(((np.round(p) + np.round(q)) > 0.0) * (((1 - np.round(p)) + (1 - np.round(q))) > 0.0)) > 0.0 | |
def NAND(p, q): | |
return np.round((1 - np.round(p)) + (1 - np.round(q))) > 0.0 | |
def AND(p, q): | |
return np.round(np.round(p) * np.round(q)) > 0.0 | |
def XNOR(p, q): | |
return np.round(np.round(p) * np.round(q) + (1 - np.round(p)) * (1 - np.round(q))) > 0.0 | |
def Q(p, q): | |
return np.round(q) > 0.0 | |
def IMP(p, q): | |
return np.round(np.round(p) * np.round(q) + (1 - np.round(p)) * np.round(q) + (1 - np.round(p))* (1 - np.round(q))) > 0.0 | |
def P(p, q): | |
return np.round(p) > 0.0 | |
def CIMP(p, q): | |
return np.round(np.round(p) * np.round(q) + np.round(p) * (1 - np.round(q)) + (1 - np.round(p))* (1 - np.round(q))) > 0.0 | |
def OR(p, q): | |
return np.round(np.round(p) + np.round(q)) > 0.0 | |
def FALSE(p, q): | |
return np.repeat(0.0, p.size) | |
gates = { | |
'TRUE': TRUE, | |
'NOR': NOR, | |
'XQ': XQ, | |
'NEGP': NEGP, | |
'CNIMP': CNIMP, | |
'NEGQ': NEGQ, | |
'XOR': XOR, | |
'NAND': NAND, | |
'AND': AND, | |
'XNOR': XNOR, | |
'Q': Q, | |
'IMP': IMP, | |
'P': P, | |
'CIMP': CIMP, | |
'FALSE': FALSE, | |
} | |
def gen_model(width, depth): | |
inputs = Input(shape=(2,)) # p, q | |
trans = Dense(2, activation='linear')(inputs) | |
for i in range(depth): | |
trans = Dense(width, activation='relu')(trans) | |
trans = Dense(width, activation='linear')(trans) | |
trans = Dense(width, activation='relu')(trans) | |
outputs = Dense(1, activation='linear')(trans) | |
model = Model(input=inputs, output=outputs) | |
model.compile(optimizer='adam', loss='mean_squared_error') | |
return model | |
def test_gate(ix, gname, gate): | |
n = 1 | |
ratio = 1.0 | |
progress = '' | |
for i in range(len(gates)): | |
if i < ix: | |
progress = '%s-' % progress | |
else: | |
progress = '%s+' % progress | |
print '-----------------------------------------' | |
sys.stdout.flush() | |
while ratio > 0.01: | |
n = n + 1 | |
for m in range(5): | |
model = gen_model(n, m) | |
for i in range(5000): | |
a = np.random.sample(100) | |
b = np.random.sample(100) | |
c = gate(a, b) | |
data = np.array([a, b]).swapaxes(0, 1) | |
model.fit(data, c, batch_size=100, nb_epoch=40, verbose=0) | |
sys.stdout.flush() | |
d = np.random.sample(1000) | |
e = np.random.sample(1000) | |
f = gate(d, e) | |
test = np.array([d, e]).swapaxes(0, 1) | |
ratio = model.evaluate(test, f, batch_size=1000, verbose=0) | |
print '%s\t%03d\t%03d %s' % (gname, n, m, progress) | |
print ratio | |
print '-----------------------------------------' | |
sys.stdout.flush() | |
return [gname, n] | |
if __name__ == "__main__": | |
results = [test_gate(ix, *pair) for ix, pair in enumerate(gates.iteritems())] | |
print results |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment