Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
name: "VGG_ILSVRC_16_layer"
layer {
name: "data"
type: "DenseImageData"
top: "data"
top: "label"
dense_image_data_param {
source: "/home/myuser/Downloads/SegNet/SegNet-Tutorial/CamVid/train.txt" # Change this to the absolute path to your data file
batch_size: 1 # Change this number to a batch size that will fit on your GPU
shuffle: true
}
}
layer {
bottom: "data"
top: "conv1_1"
name: "conv1_1"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv1_1"
top: "conv1_1"
name: "conv1_1_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv1_1"
top: "conv1_1"
name: "relu1_1"
type: "ReLU"
}
layer {
bottom: "conv1_1"
top: "conv1_2"
name: "conv1_2"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv1_2"
top: "conv1_2"
name: "conv1_2_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv1_2"
top: "conv1_2"
name: "relu1_2"
type: "ReLU"
}
layer {
bottom: "conv1_2"
top: "pool1"
top: "pool1_mask"
name: "pool1"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool1"
top: "conv2_1"
name: "conv2_1"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_1"
top: "conv2_1"
name: "conv2_1_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv2_1"
top: "conv2_1"
name: "relu2_1"
type: "ReLU"
}
layer {
bottom: "conv2_1"
top: "conv2_2"
name: "conv2_2"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_2"
top: "conv2_2"
name: "conv2_2_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv2_2"
top: "conv2_2"
name: "relu2_2"
type: "ReLU"
}
layer {
bottom: "conv2_2"
top: "pool2"
top: "pool2_mask"
name: "pool2"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool2"
top: "conv3_1"
name: "conv3_1"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_1"
top: "conv3_1"
name: "conv3_1_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv3_1"
top: "conv3_1"
name: "relu3_1"
type: "ReLU"
}
layer {
bottom: "conv3_1"
top: "conv3_2"
name: "conv3_2"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_2"
top: "conv3_2"
name: "conv3_2_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv3_2"
top: "conv3_2"
name: "relu3_2"
type: "ReLU"
}
layer {
bottom: "conv3_2"
top: "conv3_3"
name: "conv3_3"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_3"
top: "conv3_3"
name: "conv3_3_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv3_3"
top: "conv3_3"
name: "relu3_3"
type: "ReLU"
}
layer {
bottom: "conv3_3"
top: "pool3"
top: "pool3_mask"
name: "pool3"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool3"
top: "conv4_1"
name: "conv4_1"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_1"
top: "conv4_1"
name: "conv4_1_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv4_1"
top: "conv4_1"
name: "relu4_1"
type: "ReLU"
}
layer {
bottom: "conv4_1"
top: "conv4_2"
name: "conv4_2"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_2"
top: "conv4_2"
name: "conv4_2_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv4_2"
top: "conv4_2"
name: "relu4_2"
type: "ReLU"
}
layer {
bottom: "conv4_2"
top: "conv4_3"
name: "conv4_3"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_3"
top: "conv4_3"
name: "conv4_3_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv4_3"
top: "conv4_3"
name: "relu4_3"
type: "ReLU"
}
layer {
bottom: "conv4_3"
top: "pool4"
top: "pool4_mask"
name: "pool4"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
bottom: "pool4"
top: "conv5_1"
name: "conv5_1"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_1"
top: "conv5_1"
name: "conv5_1_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv5_1"
top: "conv5_1"
name: "relu5_1"
type: "ReLU"
}
layer {
bottom: "conv5_1"
top: "conv5_2"
name: "conv5_2"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_2"
top: "conv5_2"
name: "conv5_2_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv5_2"
top: "conv5_2"
name: "relu5_2"
type: "ReLU"
}
layer {
bottom: "conv5_2"
top: "conv5_3"
name: "conv5_3"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_3"
top: "conv5_3"
name: "conv5_3_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv5_3"
top: "conv5_3"
name: "relu5_3"
type: "ReLU"
}
layer {
bottom: "conv5_3"
top: "pool5"
top: "pool5_mask"
name: "pool5"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "upsample5"
type: "Upsample"
bottom: "pool5"
top: "pool5_D"
bottom: "pool5_mask"
upsample_param {
scale: 2
upsample_w: 15 #depends on image size
upsample_h: 12
}
}
layer {
bottom: "pool5_D"
top: "conv5_3_D"
name: "conv5_3_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_3_D"
top: "conv5_3_D"
name: "conv5_3_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv5_3_D"
top: "conv5_3_D"
name: "relu5_3_D"
type: "ReLU"
}
layer {
bottom: "conv5_3_D"
top: "conv5_2_D"
name: "conv5_2_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_2_D"
top: "conv5_2_D"
name: "conv5_2_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv5_2_D"
top: "conv5_2_D"
name: "relu5_2_D"
type: "ReLU"
}
layer {
bottom: "conv5_2_D"
top: "conv5_1_D"
name: "conv5_1_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv5_1_D"
top: "conv5_1_D"
name: "conv5_1_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv5_1_D"
top: "conv5_1_D"
name: "relu5_1_D"
type: "ReLU"
}
layer {
name: "upsample4"
type: "Upsample"
bottom: "conv5_1_D"
top: "pool4_D"
bottom: "pool4_mask"
upsample_param {
scale: 2
upsample_w: 30#depends on image input size
upsample_h: 23
}
}
layer {
bottom: "pool4_D"
top: "conv4_3_D"
name: "conv4_3_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_3_D"
top: "conv4_3_D"
name: "conv4_3_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv4_3_D"
top: "conv4_3_D"
name: "relu4_3_D"
type: "ReLU"
}
layer {
bottom: "conv4_3_D"
top: "conv4_2_D"
name: "conv4_2_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 512
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_2_D"
top: "conv4_2_D"
name: "conv4_2_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv4_2_D"
top: "conv4_2_D"
name: "relu4_2_D"
type: "ReLU"
}
layer {
bottom: "conv4_2_D"
top: "conv4_1_D"
name: "conv4_1_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv4_1_D"
top: "conv4_1_D"
name: "conv4_1_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv4_1_D"
top: "conv4_1_D"
name: "relu4_1_D"
type: "ReLU"
}
layer {
name: "upsample3"
type: "Upsample"
bottom: "conv4_1_D"
top: "pool3_D"
bottom: "pool3_mask"
upsample_param {
scale: 2
upsample_w: 60 #depends on image input size
upsample_h: 45
}
}
layer {
bottom: "pool3_D"
top: "conv3_3_D"
name: "conv3_3_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_3_D"
top: "conv3_3_D"
name: "conv3_3_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv3_3_D"
top: "conv3_3_D"
name: "relu3_3_D"
type: "ReLU"
}
layer {
bottom: "conv3_3_D"
top: "conv3_2_D"
name: "conv3_2_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_2_D"
top: "conv3_2_D"
name: "conv3_2_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv3_2_D"
top: "conv3_2_D"
name: "relu3_2_D"
type: "ReLU"
}
layer {
bottom: "conv3_2_D"
top: "conv3_1_D"
name: "conv3_1_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv3_1_D"
top: "conv3_1_D"
name: "conv3_1_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv3_1_D"
top: "conv3_1_D"
name: "relu3_1_D"
type: "ReLU"
}
layer {
name: "upsample2"
type: "Upsample"
bottom: "conv3_1_D"
top: "pool2_D"
bottom: "pool2_mask"
upsample_param {
scale: 2
upsample_w: 120 #depends on image input size
upsample_h: 90
}
}
layer {
bottom: "pool2_D"
top: "conv2_2_D"
name: "conv2_2_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_2_D"
top: "conv2_2_D"
name: "conv2_2_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv2_2_D"
top: "conv2_2_D"
name: "relu2_2_D"
type: "ReLU"
}
layer {
bottom: "conv2_2_D"
top: "conv2_1_D"
name: "conv2_1_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv2_1_D"
top: "conv2_1_D"
name: "conv2_1_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv2_1_D"
top: "conv2_1_D"
name: "relu2_1_D"
type: "ReLU"
}
layer {
name: "upsample1"
type: "Upsample"
bottom: "conv2_1_D"
top: "pool1_D"
bottom: "pool1_mask"
upsample_param {
scale: 2
upsample_w: 240 #depends on image input size
upsample_h: 180
}
}
layer {
bottom: "pool1_D"
top: "conv1_2_D"
name: "conv1_2_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
bottom: "conv1_2_D"
top: "conv1_2_D"
name: "conv1_2_D_bn"
type: "BN"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 1
decay_mult: 0
}
bn_param {
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
bottom: "conv1_2_D"
top: "conv1_2_D"
name: "relu1_2_D"
type: "ReLU"
}
layer {
bottom: "conv1_2_D"
top: "conv1_1_D"
name: "conv1_1_D"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
num_output: 11
pad: 1
kernel_size: 3
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "conv1_1_D"
bottom: "label"
top: "loss"
softmax_param {engine: CAFFE}
loss_param: {
weight_by_label_freqs: true
ignore_label: 11
class_weighting: 0.2595
class_weighting: 0.1826
class_weighting: 4.5640
class_weighting: 0.1417
class_weighting: 0.9051
class_weighting: 0.3826
class_weighting: 9.6446
class_weighting: 1.8418
class_weighting: 0.6823
class_weighting: 6.2478
class_weighting: 7.3614
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "conv1_1_D"
bottom: "label"
top: "accuracy"
top: "per_class_accuracy"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment