Skip to content
Create a gist now

Instantly share code, notes, and snippets.

Python timeit app for different methods of flattening a shallow list. list.extend is fastest across board.
#!/usr/bin/env python2.6
"""Usage: %prog item_count"""
from __future__ import print_function
import collections
import itertools
import operator
from timeit import Timer
import sys
import matplotlib.pyplot as pyplot
def itertools_flatten(iter_lst):
return list(itertools.chain(*iter_lst))
def itertools_iterable_flatten(iter_iter):
return list(itertools.chain.from_iterable(iter_iter))
def reduce_flatten(iter_lst):
return reduce(operator.add, map(list, iter_lst))
def reduce_lambda_flatten(iter_lst):
return reduce(operator.add, map(lambda x: list(x), [i for i in iter_lst]))
def comprehension_flatten(iter_lst):
return list(item for iter_ in iter_lst for item in iter_)
def iadd_flatten(aList):
return reduce(operator.iadd, aList, [])
def list_iadd_flatten(aList):
return reduce(list.__iadd__, aList, [])
def list_comprehension_flatten( aList ):
return [y for x in aList for y in x]
def extend_flatten(aList):
result = []
extend = result.extend
for sub in aList:
return result
METHODS = ['itertools', 'itertools_iterable',
'comprehension', 'iadd', 'list_iadd', 'list_comprehension', 'extend']
def _time_test_assert(iter_lst):
"""Make sure all methods produce an equivalent value.
:raise AssertionError: On any non-equivalent value."""
callables = (globals()[method + '_flatten'] for method in METHODS)
results = [callable(iter_lst) for callable in callables]
if not all(result == results[0] for result in results[1:]):
raise AssertionError
def time_test(partition_count, item_count_per_partition, test_count=10000):
"""Run flatten methods on a list of :param:`partition_count` iterables.
Normalize results over :param:`test_count` runs.
:return: Mapping from method to (normalized) microseconds per pass.
iter_lst = [[dict()] * item_count_per_partition] * partition_count
print('Partition count: ', partition_count)
print('Items per partition:', item_count_per_partition)
test_str = 'flatten(%r)' % iter_lst
result_by_method = {}
for method in METHODS:
setup_str = 'from %s import %s_flatten as flatten' % (__name__, method)
t = Timer(test_str, setup_str)
per_pass = test_count * t.timeit(number=test_count) / test_count
print('%20s: %.2f usec/pass' % (method, per_pass))
result_by_method[method] = per_pass
return result_by_method
if __name__ == '__main__':
if len(sys.argv) != 2:
raise ValueError('Need a number of items to flatten')
item_count = int(sys.argv[1])
partition_counts = []
pass_times_by_method = collections.defaultdict(list)
for partition_count in xrange(1, item_count):
if item_count % partition_count != 0:
items_per_partition = item_count / partition_count
result_by_method = time_test(partition_count, items_per_partition)
for method, result in result_by_method.iteritems():
for method, pass_times in pass_times_by_method.iteritems():
pyplot.plot(partition_counts, pass_times, label=method)
pyplot.title('Flattening Comparison for %d Items' % item_count)
pyplot.xlabel('Number of Partitions')
pyplot.savefig('p%d.png' % item_count)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.