Skip to content

Instantly share code, notes, and snippets.

Last active February 10, 2024 06:26
Show Gist options
  • Save mycodeschool/9678029 to your computer and use it in GitHub Desktop.
Save mycodeschool/9678029 to your computer and use it in GitHub Desktop.
/* Merge sort in C */
// Function to Merge Arrays L and R into A.
// lefCount = number of elements in L
// rightCount = number of elements in R.
void Merge(int *A,int *L,int leftCount,int *R,int rightCount) {
int i,j,k;
// i - to mark the index of left aubarray (L)
// j - to mark the index of right sub-raay (R)
// k - to mark the index of merged subarray (A)
i = 0; j = 0; k =0;
while(i<leftCount && j< rightCount) {
if(L[i] < R[j]) A[k++] = L[i++];
else A[k++] = R[j++];
while(i < leftCount) A[k++] = L[i++];
while(j < rightCount) A[k++] = R[j++];
// Recursive function to sort an array of integers.
void MergeSort(int *A,int n) {
int mid,i, *L, *R;
if(n < 2) return; // base condition. If the array has less than two element, do nothing.
mid = n/2; // find the mid index.
// create left and right subarrays
// mid elements (from index 0 till mid-1) should be part of left sub-array
// and (n-mid) elements (from mid to n-1) will be part of right sub-array
L = (int*)malloc(mid*sizeof(int));
R = (int*)malloc((n- mid)*sizeof(int));
for(i = 0;i<mid;i++) L[i] = A[i]; // creating left subarray
for(i = mid;i<n;i++) R[i-mid] = A[i]; // creating right subarray
MergeSort(L,mid); // sorting the left subarray
MergeSort(R,n-mid); // sorting the right subarray
Merge(A,L,mid,R,n-mid); // Merging L and R into A as sorted list.
int main() {
/* Code to test the MergeSort function. */
int A[] = {6,2,3,1,9,10,15,13,12,17}; // creating an array of integers.
int i,numberOfElements;
// finding number of elements in array as size of complete array in bytes divided by size of integer in bytes.
// This won't work if array is passed to the function because array
// is always passed by reference through a pointer. So sizeOf function will give size of pointer and not the array.
// Watch this video to understand this concept -
numberOfElements = sizeof(A)/sizeof(A[0]);
// Calling merge sort to sort the array.
//printing all elements in the array once its sorted.
for(i = 0;i < numberOfElements;i++) printf("%d ",A[i]);
return 0;
Copy link

I had implemented the Merge sort class for the divide and conquer method. The main method is written different.

public class divideandconquer {
//Implement the sorting algorithm Merge Sort, which you will have to use in the
//algorithm for solving Closest-Points. (25%)
//Not implemented the sort() function. Instead of that
//Merge sort class
class Merge{
private static int k;
static void mergeSort(ArrayList A, int start, int end) {
//check condition if start greater than end
if(start < end) {
//using a formula
int mid = (start + (end-1)) / 2;
//Now we divide into two valves for multiple times
mergeSort(A, start, mid);
mergeSort(A, mid+1, end);
//merge into two valves
merge(A, start, mid, end);
public static void merge(ArrayList A, int startpoint, int midpoint, int endpoint ) {
//Calculate the size of left and right halves
int lefthalve = midpoint - startpoint + 1 ;
int righthvalve = endpoint - midpoint ;
//create a temporary sub-arrays and assigned to calculated left halves
int [] left = new int[lefthalve];
//create a temporary sub-arrays and assigned to calculated right halves
int [] right = new int [righthvalve];
//We fill our sorted right sub-arrays into temporaries
for (int leftIndex = 0; leftIndex < lefthalve; ++leftIndex) {
left[leftIndex] = A.get(startpoint+leftIndex);
//We fill our sorted left sub-arrays into temporaries
for (int rightIndex = 0; rightIndex < righthvalve; ++rightIndex) {
right[rightIndex] = A.get(midpoint + 1 + rightIndex);
//Initialize the variables, iterators containing current index of temp sub-arrays
int leftIndex = 0; int rightIndex = 0; int k=startpoint;
// copying from leftArray and rightArray back into array
//for (int i = start; i < end + 1; i++) {
while(leftIndex < lefthalve && rightIndex < righthvalve) {
if(left[leftIndex]<right[rightIndex]) {
A.set(k, left[leftIndex]);
else {
A.set(k, right[rightIndex]);
// if all the elements have been copied from rightArray, copy the rest of leftArray
while (leftIndex < lefthalve) {
A.set(k, left[leftIndex]);
// if all the elements have been copied from leftArray, copy the rest of rightArray
while (rightIndex < righthvalve) {
A.set(k, right[rightIndex]);
//applying getters and setters of defined k value
public static int getK() {
return k;
public static void setK(int k) {
Merge.k = k;

Copy link


Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment