Last active
July 2, 2024 12:39
-
-
Save mycodeschool/9678029 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Merge sort in C */ | |
#include<stdio.h> | |
#include<stdlib.h> | |
// Function to Merge Arrays L and R into A. | |
// lefCount = number of elements in L | |
// rightCount = number of elements in R. | |
void Merge(int *A,int *L,int leftCount,int *R,int rightCount) { | |
int i,j,k; | |
// i - to mark the index of left aubarray (L) | |
// j - to mark the index of right sub-raay (R) | |
// k - to mark the index of merged subarray (A) | |
i = 0; j = 0; k =0; | |
while(i<leftCount && j< rightCount) { | |
if(L[i] < R[j]) A[k++] = L[i++]; | |
else A[k++] = R[j++]; | |
} | |
while(i < leftCount) A[k++] = L[i++]; | |
while(j < rightCount) A[k++] = R[j++]; | |
} | |
// Recursive function to sort an array of integers. | |
void MergeSort(int *A,int n) { | |
int mid,i, *L, *R; | |
if(n < 2) return; // base condition. If the array has less than two element, do nothing. | |
mid = n/2; // find the mid index. | |
// create left and right subarrays | |
// mid elements (from index 0 till mid-1) should be part of left sub-array | |
// and (n-mid) elements (from mid to n-1) will be part of right sub-array | |
L = (int*)malloc(mid*sizeof(int)); | |
R = (int*)malloc((n- mid)*sizeof(int)); | |
for(i = 0;i<mid;i++) L[i] = A[i]; // creating left subarray | |
for(i = mid;i<n;i++) R[i-mid] = A[i]; // creating right subarray | |
MergeSort(L,mid); // sorting the left subarray | |
MergeSort(R,n-mid); // sorting the right subarray | |
Merge(A,L,mid,R,n-mid); // Merging L and R into A as sorted list. | |
free(L); | |
free(R); | |
} | |
int main() { | |
/* Code to test the MergeSort function. */ | |
int A[] = {6,2,3,1,9,10,15,13,12,17}; // creating an array of integers. | |
int i,numberOfElements; | |
// finding number of elements in array as size of complete array in bytes divided by size of integer in bytes. | |
// This won't work if array is passed to the function because array | |
// is always passed by reference through a pointer. So sizeOf function will give size of pointer and not the array. | |
// Watch this video to understand this concept - http://www.youtube.com/watch?v=CpjVucvAc3g | |
numberOfElements = sizeof(A)/sizeof(A[0]); | |
// Calling merge sort to sort the array. | |
MergeSort(A,numberOfElements); | |
//printing all elements in the array once its sorted. | |
for(i = 0;i < numberOfElements;i++) printf("%d ",A[i]); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I had implemented the Merge sort class for the divide and conquer method. The main method is written different.
public class divideandconquer {
//Implement the sorting algorithm Merge Sort, which you will have to use in the
//algorithm for solving Closest-Points. (25%)
//**************
//Not implemented the sort() function. Instead of that
//Merge sort class
class Merge{
private static int k;
static void mergeSort(ArrayList A, int start, int end) {
//check condition if start greater than end
if(start < end) {
//using a formula
int mid = (start + (end-1)) / 2;
//Now we divide into two valves for multiple times
mergeSort(A, start, mid);
mergeSort(A, mid+1, end);
//merge into two valves
merge(A, start, mid, end);
}
}
public static void merge(ArrayList A, int startpoint, int midpoint, int endpoint ) {
//Calculate the size of left and right halves
int lefthalve = midpoint - startpoint + 1 ;
int righthvalve = endpoint - midpoint ;
//create a temporary sub-arrays and assigned to calculated left halves
int [] left = new int[lefthalve];
//create a temporary sub-arrays and assigned to calculated right halves
int [] right = new int [righthvalve];
//We fill our sorted right sub-arrays into temporaries
for (int leftIndex = 0; leftIndex < lefthalve; ++leftIndex) {
left[leftIndex] = A.get(startpoint+leftIndex);
}
//We fill our sorted left sub-arrays into temporaries
for (int rightIndex = 0; rightIndex < righthvalve; ++rightIndex) {
right[rightIndex] = A.get(midpoint + 1 + rightIndex);
}
//Initialize the variables, iterators containing current index of temp sub-arrays
int leftIndex = 0; int rightIndex = 0; int k=startpoint;
// copying from leftArray and rightArray back into array
//for (int i = start; i < end + 1; i++) {
while(leftIndex < lefthalve && rightIndex < righthvalve) {
if(left[leftIndex]<right[rightIndex]) {
A.set(k, left[leftIndex]);
leftIndex++;
}
else {
A.set(k, right[rightIndex]);
rightIndex++;
}
k++;
}
// if all the elements have been copied from rightArray, copy the rest of leftArray
while (leftIndex < lefthalve) {
A.set(k, left[leftIndex]);
leftIndex++;
k++;
}
// if all the elements have been copied from leftArray, copy the rest of rightArray
while (rightIndex < righthvalve) {
A.set(k, right[rightIndex]);
rightIndex++;
k++;
}
}
//applying getters and setters of defined k value
public static int getK() {
return k;
}
public static void setK(int k) {
Merge.k = k;
}
}
}