Last active
April 10, 2020 06:59
-
-
Save myme5261314/005ceac0483fc5a581cc to your computer and use it in GitHub Desktop.
RBM procedure using tensorflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import input_data | |
import Image | |
from util import tile_raster_images | |
def sample_prob(probs): | |
return tf.nn.relu( | |
tf.sign( | |
probs - tf.random_uniform(tf.shape(probs)))) | |
alpha = 1.0 | |
batchsize = 100 | |
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\ | |
mnist.test.labels | |
X = tf.placeholder("float", [None, 784]) | |
Y = tf.placeholder("float", [None, 10]) | |
rbm_w = tf.placeholder("float", [784, 500]) | |
rbm_vb = tf.placeholder("float", [784]) | |
rbm_hb = tf.placeholder("float", [500]) | |
h0 = sample_prob(tf.nn.sigmoid(tf.matmul(X, rbm_w) + rbm_hb)) | |
v1 = sample_prob(tf.nn.sigmoid( | |
tf.matmul(h0, tf.transpose(rbm_w)) + rbm_vb)) | |
h1 = tf.nn.sigmoid(tf.matmul(v1, rbm_w) + rbm_hb) | |
w_positive_grad = tf.matmul(tf.transpose(X), h0) | |
w_negative_grad = tf.matmul(tf.transpose(v1), h1) | |
update_w = rbm_w + alpha * \ | |
(w_positive_grad - w_negative_grad) / tf.to_float(tf.shape(X)[0]) | |
update_vb = rbm_vb + alpha * tf.reduce_mean(X - v1, 0) | |
update_hb = rbm_hb + alpha * tf.reduce_mean(h0 - h1, 0) | |
h_sample = sample_prob(tf.nn.sigmoid(tf.matmul(X, rbm_w) + rbm_hb)) | |
v_sample = sample_prob(tf.nn.sigmoid( | |
tf.matmul(h_sample, tf.transpose(rbm_w)) + rbm_vb)) | |
err = X - v_sample | |
err_sum = tf.reduce_mean(err * err) | |
sess = tf.Session() | |
init = tf.initialize_all_variables() | |
sess.run(init) | |
n_w = np.zeros([784, 500], np.float32) | |
n_vb = np.zeros([784], np.float32) | |
n_hb = np.zeros([500], np.float32) | |
o_w = np.zeros([784, 500], np.float32) | |
o_vb = np.zeros([784], np.float32) | |
o_hb = np.zeros([500], np.float32) | |
print sess.run( | |
err_sum, feed_dict={X: trX, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
for start, end in zip( | |
range(0, len(trX), batchsize), range(batchsize, len(trX), batchsize)): | |
batch = trX[start:end] | |
n_w = sess.run(update_w, feed_dict={ | |
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
n_vb = sess.run(update_vb, feed_dict={ | |
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
n_hb = sess.run(update_hb, feed_dict={ | |
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
o_w = n_w | |
o_vb = n_vb | |
o_hb = n_hb | |
if start % 10000 == 0: | |
print sess.run( | |
err_sum, feed_dict={X: trX, rbm_w: n_w, rbm_vb: n_vb, rbm_hb: n_hb}) | |
image = Image.fromarray( | |
tile_raster_images( | |
X=n_w.T, | |
img_shape=(28, 28), | |
tile_shape=(25, 20), | |
tile_spacing=(1, 1) | |
) | |
) | |
image.save("rbm_%d.png" % (start / 10000)) |
Wow that is great example THANK YOU. Do you know how to remove the redundancy in graph?
Im trying to implement pretraining of autoencoders with rbm:
https://github.com/Cospel/rbm-ae-tf
Share my code here, everything was done in one session.run()
https://github.com/hanhongsun/tensorflow_script/blob/master/rbm.py
Line 29 is wrong: h1 = tf.nn.sigmoid(tf.matmul(v1, rbm_w) + rbm_hb) should be h1=sample_prob(tf.nn.sigmoid(tf.matmul(v1, rbm_w) + rbm_hb))
你的sample_prob没有按照概率 采样吧。
your function named "sample_prob", is not a sample by fixed-probability.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Thank you for share. This is a great example for doing customized update on tensorflow.