Skip to content

Instantly share code, notes, and snippets.

@myme5261314
Last active April 10, 2020 06:59
Show Gist options
  • Save myme5261314/005ceac0483fc5a581cc to your computer and use it in GitHub Desktop.
Save myme5261314/005ceac0483fc5a581cc to your computer and use it in GitHub Desktop.
RBM procedure using tensorflow
import tensorflow as tf
import numpy as np
import input_data
import Image
from util import tile_raster_images
def sample_prob(probs):
return tf.nn.relu(
tf.sign(
probs - tf.random_uniform(tf.shape(probs))))
alpha = 1.0
batchsize = 100
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\
mnist.test.labels
X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10])
rbm_w = tf.placeholder("float", [784, 500])
rbm_vb = tf.placeholder("float", [784])
rbm_hb = tf.placeholder("float", [500])
h0 = sample_prob(tf.nn.sigmoid(tf.matmul(X, rbm_w) + rbm_hb))
v1 = sample_prob(tf.nn.sigmoid(
tf.matmul(h0, tf.transpose(rbm_w)) + rbm_vb))
h1 = tf.nn.sigmoid(tf.matmul(v1, rbm_w) + rbm_hb)
w_positive_grad = tf.matmul(tf.transpose(X), h0)
w_negative_grad = tf.matmul(tf.transpose(v1), h1)
update_w = rbm_w + alpha * \
(w_positive_grad - w_negative_grad) / tf.to_float(tf.shape(X)[0])
update_vb = rbm_vb + alpha * tf.reduce_mean(X - v1, 0)
update_hb = rbm_hb + alpha * tf.reduce_mean(h0 - h1, 0)
h_sample = sample_prob(tf.nn.sigmoid(tf.matmul(X, rbm_w) + rbm_hb))
v_sample = sample_prob(tf.nn.sigmoid(
tf.matmul(h_sample, tf.transpose(rbm_w)) + rbm_vb))
err = X - v_sample
err_sum = tf.reduce_mean(err * err)
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
n_w = np.zeros([784, 500], np.float32)
n_vb = np.zeros([784], np.float32)
n_hb = np.zeros([500], np.float32)
o_w = np.zeros([784, 500], np.float32)
o_vb = np.zeros([784], np.float32)
o_hb = np.zeros([500], np.float32)
print sess.run(
err_sum, feed_dict={X: trX, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb})
for start, end in zip(
range(0, len(trX), batchsize), range(batchsize, len(trX), batchsize)):
batch = trX[start:end]
n_w = sess.run(update_w, feed_dict={
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb})
n_vb = sess.run(update_vb, feed_dict={
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb})
n_hb = sess.run(update_hb, feed_dict={
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb})
o_w = n_w
o_vb = n_vb
o_hb = n_hb
if start % 10000 == 0:
print sess.run(
err_sum, feed_dict={X: trX, rbm_w: n_w, rbm_vb: n_vb, rbm_hb: n_hb})
image = Image.fromarray(
tile_raster_images(
X=n_w.T,
img_shape=(28, 28),
tile_shape=(25, 20),
tile_spacing=(1, 1)
)
)
image.save("rbm_%d.png" % (start / 10000))
@hanhongsun
Copy link

Thank you for share. This is a great example for doing customized update on tensorflow.

@Cospel
Copy link

Cospel commented Apr 13, 2016

Wow that is great example THANK YOU. Do you know how to remove the redundancy in graph?

Im trying to implement pretraining of autoencoders with rbm:
https://github.com/Cospel/rbm-ae-tf

@hanhongsun
Copy link

Share my code here, everything was done in one session.run()
https://github.com/hanhongsun/tensorflow_script/blob/master/rbm.py

@madzhen
Copy link

madzhen commented Sep 11, 2016

Line 29 is wrong: h1 = tf.nn.sigmoid(tf.matmul(v1, rbm_w) + rbm_hb) should be h1=sample_prob(tf.nn.sigmoid(tf.matmul(v1, rbm_w) + rbm_hb))

@jxyyjm
Copy link

jxyyjm commented May 4, 2017

你的sample_prob没有按照概率 采样吧。
your function named "sample_prob", is not a sample by fixed-probability.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment