Skip to content

Instantly share code, notes, and snippets.

View mypapit's full-sized avatar
🤒
Out sick

Mohammad Hafiz bin Ismail (mypapit) mypapit

🤒
Out sick
View GitHub Profile
#https://github.com/bigbeartechworld/big-bear-casaos/tree/master/Apps/pterodactyl-panel
bash -c "$(wget -qLO - https://raw.githubusercontent.com/bigbeartechworld/big-bear-scripts/master/start-pterodactyl-panel/run.sh)"
#conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia.
import torch
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)
@mypapit
mypapit / nginxlogip.sh
Last active February 8, 2024 01:54
Analyze the log file to find the IP that accessed the webserver server the most
#!/bin/bash
# Check if a log file was specified
if [ "$#" -ne 1 ]; then
echo "Usage: $0 access.log"
exit 1
fi
LOG_FILE="$1"
import random
#this is to generate fake mykad numbers
def generate_mykad_number():
# Generate date of birth (YYMMDD)
year = str(random.randint(50, 99)) # assuming a range for adult ages
month = str(random.randint(1, 12)).zfill(2)
day = str(random.randint(1, 28)).zfill(2) # using 28 to avoid issues with February
dob = year + month + day
@mypapit
mypapit / gist:c30ca56d06ed7002b7fe4848e661edc7
Created December 24, 2023 22:55
request-cerbot-certonly.sh
sudo certbot certonly --webroot -w /path/to/your/web/root -d fakap.net
@mypapit
mypapit / ojs3-proxy-sites-available.conf
Created April 28, 2023 02:15
How to run OJS 3 on Apache HTTPD behind nginx reverse proxy smoothly
# Mohammad Hafiz bin Ismail <mypapit@gmail.com>
# blog.mypapit.net
# this is for Ubuntu/Debian Apache server config
#/etc/apache2/sites-available/your-ojs.conf
<VirtualHost *:9080>
ServerAdmin ojs@example.com
ServerName ojs-site.example.com
from keras_cv import RetinaNet
# Define global configuration parameters
backbone = "resnet50"
weights = "imagenet"
num_classes = 20
batch_size = 2
# Load the custom Pascal VOC dataset
dataset = RetinaNet.load_pascal_voc("path/to/dataset", batch_size=batch_size)
from keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPooling2D, Flatten, Dense, Dropout, Reshape, Permute, multiply, Lambda
from keras.models import Model
from keras import backend as K
# Define the attention mechanism layer
def attention(x):
f = Conv2D(filters=64, kernel_size=1, strides=1, padding='same')(x)
g = Conv2D(filters=64, kernel_size=1, strides=1, padding='same')(x)
h = Conv2D(filters=256, kernel_size=1, strides=1, padding='same')(x)
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
# Load and preprocess the news headlines dataset
filename = "news_headlines.txt"
text = open(filename).read()
text = text.lower()
<html>
<head>
<style>
canvas {
width: 100%;
height: 100%;
}
</style>
</head>
<body>