Skip to content

Instantly share code, notes, and snippets.

@mzp
Last active December 12, 2015 03:29
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save mzp/4707346 to your computer and use it in GitHub Desktop.
Save mzp/4707346 to your computer and use it in GitHub Desktop.
Usage
======
Run `analyze.rb` to genarte statics data:
ruby analyze.rb example.csv > data.js
And open `dot.html`.
# usage:
# ruby analyze.rb data/switch.csv > data/result.json
#
require 'csv'
require 'json'
hash = Hash.new {|h,k| h[k] = [] }
puts 'var data = ['
CSV.open(ARGV.first) do|csv|
rows = csv.to_a
rows.each do|row|
wday, hour, count = *row
puts "{ x : #{hour.to_i}, y : '#{wday}', z : #{count.to_i} },"
end
end
puts '];'
<html>
<head>
<title>Scatterplot</title>
<script type="text/javascript" src="protovis.js"></script>
<script type="text/javascript" src="data.js"></script>
</head>
<body>
<script type="text/javascript+protovis">
/*var data = pv.range(100).map(function(x) {
return {x: x, y: 'Fri', z: Math.pow(10, 2 * Math.random())};
});*/
/* Sizing and scales. */
var wday = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'].reverse();
var w = 400,
h = 200,
x = pv.Scale.linear(0, 24).range(0, w),
y = pv.Scale.ordinal(wday).split(0, h),
c = pv.Scale.linear(0, 20).range("orange", "brown");
/* The root panel. */
var vis = new pv.Panel()
.width(w)
.height(h)
.bottom(20)
.left(50)
.right(10)
.top(5);
/* Y-axis and ticks. */
vis.add(pv.Rule)
.data(wday)
.strokeStyle(function(d) d ? "#eee" : "#000")
.bottom(y)
.anchor("left").add(pv.Label);
/* X-axis and ticks. */
vis.add(pv.Rule)
.data(x.ticks())
.left(x)
.strokeStyle(function(d) d ? "#eee" : "#000")
.anchor("bottom").add(pv.Label)
.visible(function(d) d > 0 && d < 100)
.text(x.tickFormat);
/* The dot plot! */
vis.add(pv.Panel)
.data(data)
.add(pv.Dot)
.left(function(d) x(d.x))
.bottom(function(d) y(d.y))
.strokeStyle(function(d) c(d.z))
.fillStyle(function() this.strokeStyle().alpha(.2))
.size(function(d) 5*d.z)
.title(function(d) d.z.toFixed(1));
vis.render();
</script>
</body>
</html>
Fri 23 4
Sat 00 3
Sun 14 3
Thu 22 6
Wed 12 1
Thu 23 2
Sat 21 1
Mon 20 1
Sat 22 2
Mon 21 2
Sun 21 1
Sun 22 1
Thu 09 1
Tue 00 1
Fri 20 1
Mon 23 1
Tue 01 1
Wed 03 1
Wed 22 1
Fri 22 1
Thu 00 1
Tue 21 1
/**
* @class The built-in Array class.
* @name Array
*/
/**
* Creates a new array with the results of calling a provided function on every
* element in this array. Implemented in Javascript 1.6.
*
* @function
* @name Array.prototype.map
* @see <a
* href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/Map">map</a>
* documentation.
* @param {function} f function that produces an element of the new Array from
* an element of the current one.
* @param [o] object to use as <tt>this</tt> when executing <tt>f</tt>.
*/
if (!Array.prototype.map) Array.prototype.map = function(f, o) {
var n = this.length;
var result = new Array(n);
for (var i = 0; i < n; i++) {
if (i in this) {
result[i] = f.call(o, this[i], i, this);
}
}
return result;
};
/**
* Creates a new array with all elements that pass the test implemented by the
* provided function. Implemented in Javascript 1.6.
*
* @function
* @name Array.prototype.filter
* @see <a
* href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/filter">filter</a>
* documentation.
* @param {function} f function to test each element of the array.
* @param [o] object to use as <tt>this</tt> when executing <tt>f</tt>.
*/
if (!Array.prototype.filter) Array.prototype.filter = function(f, o) {
var n = this.length;
var result = new Array();
for (var i = 0; i < n; i++) {
if (i in this) {
var v = this[i];
if (f.call(o, v, i, this)) result.push(v);
}
}
return result;
};
/**
* Executes a provided function once per array element. Implemented in
* Javascript 1.6.
*
* @function
* @name Array.prototype.forEach
* @see <a
* href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/ForEach">forEach</a>
* documentation.
* @param {function} f function to execute for each element.
* @param [o] object to use as <tt>this</tt> when executing <tt>f</tt>.
*/
if (!Array.prototype.forEach) Array.prototype.forEach = function(f, o) {
var n = this.length >>> 0;
for (var i = 0; i < n; i++) {
if (i in this) f.call(o, this[i], i, this);
}
};
/**
* Apply a function against an accumulator and each value of the array (from
* left-to-right) as to reduce it to a single value. Implemented in Javascript
* 1.8.
*
* @function
* @name Array.prototype.reduce
* @see <a
* href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/Reduce">reduce</a>
* documentation.
* @param {function} f function to execute on each value in the array.
* @param [v] object to use as the first argument to the first call of
* <tt>t</tt>.
*/
if (!Array.prototype.reduce) Array.prototype.reduce = function(f, v) {
var len = this.length;
if (!len && (arguments.length == 1)) {
throw new Error("reduce: empty array, no initial value");
}
var i = 0;
if (arguments.length < 2) {
while (true) {
if (i in this) {
v = this[i++];
break;
}
if (++i >= len) {
throw new Error("reduce: no values, no initial value");
}
}
}
for (; i < len; i++) {
if (i in this) {
v = f(v, this[i], i, this);
}
}
return v;
};
/**
* The top-level Protovis namespace. All public methods and fields should be
* registered on this object. Note that core Protovis source is surrounded by an
* anonymous function, so any other declared globals will not be visible outside
* of core methods. This also allows multiple versions of Protovis to coexist,
* since each version will see their own <tt>pv</tt> namespace.
*
* @namespace The top-level Protovis namespace, <tt>pv</tt>.
*/
var pv = {};
/**
* Protovis version number. See <a href="http://semver.org">semver.org</a>.
*
* @type string
* @constant
*/
pv.version = "3.3.1";
/**
* Returns the passed-in argument, <tt>x</tt>; the identity function. This method
* is provided for convenience since it is used as the default behavior for a
* number of property functions.
*
* @param x a value.
* @returns the value <tt>x</tt>.
*/
pv.identity = function(x) { return x; };
/**
* Returns <tt>this.index</tt>. This method is provided for convenience for use
* with scales. For example, to color bars by their index, say:
*
* <pre>.fillStyle(pv.Colors.category10().by(pv.index))</pre>
*
* This method is equivalent to <tt>function() this.index</tt>, but more
* succinct. Note that the <tt>index</tt> property is also supported for
* accessor functions with {@link pv.max}, {@link pv.min} and other array
* utility methods.
*
* @see pv.Scale
* @see pv.Mark#index
*/
pv.index = function() { return this.index; };
/**
* Returns <tt>this.childIndex</tt>. This method is provided for convenience for
* use with scales. For example, to color bars by their child index, say:
*
* <pre>.fillStyle(pv.Colors.category10().by(pv.child))</pre>
*
* This method is equivalent to <tt>function() this.childIndex</tt>, but more
* succinct.
*
* @see pv.Scale
* @see pv.Mark#childIndex
*/
pv.child = function() { return this.childIndex; };
/**
* Returns <tt>this.parent.index</tt>. This method is provided for convenience
* for use with scales. This method is provided for convenience for use with
* scales. For example, to color bars by their parent index, say:
*
* <pre>.fillStyle(pv.Colors.category10().by(pv.parent))</pre>
*
* Tthis method is equivalent to <tt>function() this.parent.index</tt>, but more
* succinct.
*
* @see pv.Scale
* @see pv.Mark#index
*/
pv.parent = function() { return this.parent.index; };
/**
* Stores the current event. This field is only set within event handlers.
*
* @type Event
* @name pv.event
*/
/**
* @private Returns a prototype object suitable for extending the given class
* <tt>f</tt>. Rather than constructing a new instance of <tt>f</tt> to serve as
* the prototype (which unnecessarily runs the constructor on the created
* prototype object, potentially polluting it), an anonymous function is
* generated internally that shares the same prototype:
*
* <pre>function g() {}
* g.prototype = f.prototype;
* return new g();</pre>
*
* For more details, see Douglas Crockford's essay on prototypal inheritance.
*
* @param {function} f a constructor.
* @returns a suitable prototype object.
* @see Douglas Crockford's essay on <a
* href="http://javascript.crockford.com/prototypal.html">prototypal
* inheritance</a>.
*/
pv.extend = function(f) {
function g() {}
g.prototype = f.prototype || f;
return new g();
};
try {
eval("pv.parse = function(x) x;"); // native support
} catch (e) {
/**
* @private Parses a Protovis specification, which may use JavaScript 1.8
* function expresses, replacing those function expressions with proper
* functions such that the code can be run by a JavaScript 1.6 interpreter. This
* hack only supports function expressions (using clumsy regular expressions, no
* less), and not other JavaScript 1.8 features such as let expressions.
*
* @param {string} s a Protovis specification (i.e., a string of JavaScript 1.8
* source code).
* @returns {string} a conformant JavaScript 1.6 source code.
*/
pv.parse = function(js) { // hacky regex support
var re = new RegExp("function\\s*(\\b\\w+)?\\s*\\([^)]*\\)\\s*", "mg"), m, d, i = 0, s = "";
while (m = re.exec(js)) {
var j = m.index + m[0].length;
if (js.charAt(j) != '{') {
s += js.substring(i, j) + "{return ";
i = j;
for (var p = 0; p >= 0 && j < js.length; j++) {
var c = js.charAt(j);
switch (c) {
case '"': case '\'': {
while (++j < js.length && (d = js.charAt(j)) != c) {
if (d == '\\') j++;
}
break;
}
case '[': case '(': p++; break;
case ']': case ')': p--; break;
case ';':
case ',': if (p == 0) p--; break;
}
}
s += pv.parse(js.substring(i, --j)) + ";}";
i = j;
}
re.lastIndex = j;
}
s += js.substring(i);
return s;
};
}
/**
* @private Computes the value of the specified CSS property <tt>p</tt> on the
* specified element <tt>e</tt>.
*
* @param {string} p the name of the CSS property.
* @param e the element on which to compute the CSS property.
*/
pv.css = function(e, p) {
return window.getComputedStyle
? window.getComputedStyle(e, null).getPropertyValue(p)
: e.currentStyle[p];
};
/**
* @private Reports the specified error to the JavaScript console. Mozilla only
* allows logging to the console for privileged code; if the console is
* unavailable, the alert dialog box is used instead.
*
* @param e the exception that triggered the error.
*/
pv.error = function(e) {
(typeof console == "undefined") ? alert(e) : console.error(e);
};
/**
* @private Registers the specified listener for events of the specified type on
* the specified target. For standards-compliant browsers, this method uses
* <tt>addEventListener</tt>; for Internet Explorer, <tt>attachEvent</tt>.
*
* @param target a DOM element.
* @param {string} type the type of event, such as "click".
* @param {function} the event handler callback.
*/
pv.listen = function(target, type, listener) {
listener = pv.listener(listener);
return target.addEventListener
? target.addEventListener(type, listener, false)
: target.attachEvent("on" + type, listener);
};
/**
* @private Returns a wrapper for the specified listener function such that the
* {@link pv.event} is set for the duration of the listener's invocation. The
* wrapper is cached on the returned function, such that duplicate registrations
* of the wrapped event handler are ignored.
*
* @param {function} f an event handler.
* @returns {function} the wrapped event handler.
*/
pv.listener = function(f) {
return f.$listener || (f.$listener = function(e) {
try {
pv.event = e;
return f.call(this, e);
} finally {
delete pv.event;
}
});
};
/**
* @private Returns true iff <i>a</i> is an ancestor of <i>e</i>. This is useful
* for ignoring mouseout and mouseover events that are contained within the
* target element.
*/
pv.ancestor = function(a, e) {
while (e) {
if (e == a) return true;
e = e.parentNode;
}
return false;
};
/** @private Returns a locally-unique positive id. */
pv.id = function() {
var id = 1; return function() { return id++; };
}();
/** @private Returns a function wrapping the specified constant. */
pv.functor = function(v) {
return typeof v == "function" ? v : function() { return v; };
};
/*
* Parses the Protovis specifications on load, allowing the use of JavaScript
* 1.8 function expressions on browsers that only support JavaScript 1.6.
*
* @see pv.parse
*/
pv.listen(window, "load", function() {
/*
* Note: in Firefox any variables declared here are visible to the eval'd
* script below. Even worse, any global variables declared by the script
* could overwrite local variables here (such as the index, `i`)! To protect
* against this, all variables are explicitly scoped on a pv.$ object.
*/
pv.$ = {i:0, x:document.getElementsByTagName("script")};
for (; pv.$.i < pv.$.x.length; pv.$.i++) {
pv.$.s = pv.$.x[pv.$.i];
if (pv.$.s.type == "text/javascript+protovis") {
try {
window.eval(pv.parse(pv.$.s.text));
} catch (e) {
pv.error(e);
}
}
}
delete pv.$;
});
/**
* Abstract; see an implementing class.
*
* @class Represents an abstract text formatter and parser. A <i>format</i> is a
* function that converts an object of a given type, such as a <tt>Date</tt>, to
* a human-readable string representation. The format may also have a
* {@link #parse} method for converting a string representation back to the
* given object type.
*
* <p>Because formats are themselves functions, they can be used directly as
* mark properties. For example, if the data associated with a label are dates,
* a date format can be used as label text:
*
* <pre> .text(pv.Format.date("%m/%d/%y"))</pre>
*
* And as with scales, if the format is used in multiple places, it can be
* convenient to declare it as a global variable and then reference it from the
* appropriate property functions. For example, if the data has a <tt>date</tt>
* attribute, and <tt>format</tt> references a given date format:
*
* <pre> .text(function(d) format(d.date))</pre>
*
* Similarly, to parse a string into a date:
*
* <pre>var date = format.parse("4/30/2010");</pre>
*
* Not all format implementations support parsing. See the implementing class
* for details.
*
* @see pv.Format.date
* @see pv.Format.number
* @see pv.Format.time
*/
pv.Format = {};
/**
* Formats the specified object, returning the string representation.
*
* @function
* @name pv.Format.prototype.format
* @param {object} x the object to format.
* @returns {string} the formatted string.
*/
/**
* Parses the specified string, returning the object representation.
*
* @function
* @name pv.Format.prototype.parse
* @param {string} x the string to parse.
* @returns {object} the parsed object.
*/
/**
* @private Given a string that may be used as part of a regular expression,
* this methods returns an appropriately quoted version of the specified string,
* with any special characters escaped.
*
* @param {string} s a string to quote.
* @returns {string} the quoted string.
*/
pv.Format.re = function(s) {
return s.replace(/[\\\^\$\*\+\?\[\]\(\)\.\{\}]/g, "\\$&");
};
/**
* @private Optionally pads the specified string <i>s</i> so that it is at least
* <i>n</i> characters long, using the padding character <i>c</i>.
*
* @param {string} c the padding character.
* @param {number} n the minimum string length.
* @param {string} s the string to pad.
* @returns {string} the padded string.
*/
pv.Format.pad = function(c, n, s) {
var m = n - String(s).length;
return (m < 1) ? s : new Array(m + 1).join(c) + s;
};
/**
* Constructs a new date format with the specified string pattern.
*
* @class The format string is in the same format expected by the
* <tt>strftime</tt> function in C. The following conversion specifications are
* supported:<ul>
*
* <li>%a - abbreviated weekday name.</li>
* <li>%A - full weekday name.</li>
* <li>%b - abbreviated month names.</li>
* <li>%B - full month names.</li>
* <li>%c - locale's appropriate date and time.</li>
* <li>%C - century number.</li>
* <li>%d - day of month [01,31] (zero padded).</li>
* <li>%D - same as %m/%d/%y.</li>
* <li>%e - day of month [ 1,31] (space padded).</li>
* <li>%h - same as %b.</li>
* <li>%H - hour (24-hour clock) [00,23] (zero padded).</li>
* <li>%I - hour (12-hour clock) [01,12] (zero padded).</li>
* <li>%m - month number [01,12] (zero padded).</li>
* <li>%M - minute [0,59] (zero padded).</li>
* <li>%n - newline character.</li>
* <li>%p - locale's equivalent of a.m. or p.m.</li>
* <li>%r - same as %I:%M:%S %p.</li>
* <li>%R - same as %H:%M.</li>
* <li>%S - second [00,61] (zero padded).</li>
* <li>%t - tab character.</li>
* <li>%T - same as %H:%M:%S.</li>
* <li>%x - same as %m/%d/%y.</li>
* <li>%X - same as %I:%M:%S %p.</li>
* <li>%y - year with century [00,99] (zero padded).</li>
* <li>%Y - year including century.</li>
* <li>%% - %.</li>
*
* </ul>The following conversion specifications are currently <i>unsupported</i>
* for formatting:<ul>
*
* <li>%j - day number [1,366].</li>
* <li>%u - weekday number [1,7].</li>
* <li>%U - week number [00,53].</li>
* <li>%V - week number [01,53].</li>
* <li>%w - weekday number [0,6].</li>
* <li>%W - week number [00,53].</li>
* <li>%Z - timezone name or abbreviation.</li>
*
* </ul>In addition, the following conversion specifications are currently
* <i>unsupported</i> for parsing:<ul>
*
* <li>%a - day of week, either abbreviated or full name.</li>
* <li>%A - same as %a.</li>
* <li>%c - locale's appropriate date and time.</li>
* <li>%C - century number.</li>
* <li>%D - same as %m/%d/%y.</li>
* <li>%I - hour (12-hour clock) [1,12].</li>
* <li>%n - any white space.</li>
* <li>%p - locale's equivalent of a.m. or p.m.</li>
* <li>%r - same as %I:%M:%S %p.</li>
* <li>%R - same as %H:%M.</li>
* <li>%t - same as %n.</li>
* <li>%T - same as %H:%M:%S.</li>
* <li>%x - locale's equivalent to %m/%d/%y.</li>
* <li>%X - locale's equivalent to %I:%M:%S %p.</li>
*
* </ul>
*
* @see <a
* href="http://www.opengroup.org/onlinepubs/007908799/xsh/strftime.html">strftime</a>
* documentation.
* @see <a
* href="http://www.opengroup.org/onlinepubs/007908799/xsh/strptime.html">strptime</a>
* documentation.
* @extends pv.Format
* @param {string} pattern the format pattern.
*/
pv.Format.date = function(pattern) {
var pad = pv.Format.pad;
/** @private */
function format(d) {
return pattern.replace(/%[a-zA-Z0-9]/g, function(s) {
switch (s) {
case '%a': return [
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
][d.getDay()];
case '%A': return [
"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday"
][d.getDay()];
case '%h':
case '%b': return [
"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"
][d.getMonth()];
case '%B': return [
"January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"
][d.getMonth()];
case '%c': return d.toLocaleString();
case '%C': return pad("0", 2, Math.floor(d.getFullYear() / 100) % 100);
case '%d': return pad("0", 2, d.getDate());
case '%x':
case '%D': return pad("0", 2, d.getMonth() + 1)
+ "/" + pad("0", 2, d.getDate())
+ "/" + pad("0", 2, d.getFullYear() % 100);
case '%e': return pad(" ", 2, d.getDate());
case '%H': return pad("0", 2, d.getHours());
case '%I': {
var h = d.getHours() % 12;
return h ? pad("0", 2, h) : 12;
}
// TODO %j: day of year as a decimal number [001,366]
case '%m': return pad("0", 2, d.getMonth() + 1);
case '%M': return pad("0", 2, d.getMinutes());
case '%n': return "\n";
case '%p': return d.getHours() < 12 ? "AM" : "PM";
case '%T':
case '%X':
case '%r': {
var h = d.getHours() % 12;
return (h ? pad("0", 2, h) : 12)
+ ":" + pad("0", 2, d.getMinutes())
+ ":" + pad("0", 2, d.getSeconds())
+ " " + (d.getHours() < 12 ? "AM" : "PM");
}
case '%R': return pad("0", 2, d.getHours()) + ":" + pad("0", 2, d.getMinutes());
case '%S': return pad("0", 2, d.getSeconds());
case '%Q': return pad("0", 3, d.getMilliseconds());
case '%t': return "\t";
case '%u': {
var w = d.getDay();
return w ? w : 1;
}
// TODO %U: week number (sunday first day) [00,53]
// TODO %V: week number (monday first day) [01,53] ... with weirdness
case '%w': return d.getDay();
// TODO %W: week number (monday first day) [00,53] ... with weirdness
case '%y': return pad("0", 2, d.getFullYear() % 100);
case '%Y': return d.getFullYear();
// TODO %Z: timezone name or abbreviation
case '%%': return "%";
}
return s;
});
}
/**
* Converts a date to a string using the associated formatting pattern.
*
* @function
* @name pv.Format.date.prototype.format
* @param {Date} date a date to format.
* @returns {string} the formatted date as a string.
*/
format.format = format;
/**
* Parses a date from a string using the associated formatting pattern.
*
* @function
* @name pv.Format.date.prototype.parse
* @param {string} s the string to parse as a date.
* @returns {Date} the parsed date.
*/
format.parse = function(s) {
var year = 1970, month = 0, date = 1, hour = 0, minute = 0, second = 0;
var fields = [function() {}];
/* Register callbacks for each field in the format pattern. */
var re = pv.Format.re(pattern).replace(/%[a-zA-Z0-9]/g, function(s) {
switch (s) {
// TODO %a: day of week, either abbreviated or full name
// TODO %A: same as %a
case '%b': {
fields.push(function(x) { month = {
Jan: 0, Feb: 1, Mar: 2, Apr: 3, May: 4, Jun: 5, Jul: 6, Aug: 7,
Sep: 8, Oct: 9, Nov: 10, Dec: 11
}[x]; });
return "([A-Za-z]+)";
}
case '%h':
case '%B': {
fields.push(function(x) { month = {
January: 0, February: 1, March: 2, April: 3, May: 4, June: 5,
July: 6, August: 7, September: 8, October: 9, November: 10,
December: 11
}[x]; });
return "([A-Za-z]+)";
}
// TODO %c: locale's appropriate date and time
// TODO %C: century number[0,99]
case '%e':
case '%d': {
fields.push(function(x) { date = x; });
return "([0-9]+)";
}
// TODO %D: same as %m/%d/%y
case '%I':
case '%H': {
fields.push(function(x) { hour = x; });
return "([0-9]+)";
}
// TODO %j: day number [1,366]
case '%m': {
fields.push(function(x) { month = x - 1; });
return "([0-9]+)";
}
case '%M': {
fields.push(function(x) { minute = x; });
return "([0-9]+)";
}
// TODO %n: any white space
// TODO %p: locale's equivalent of a.m. or p.m.
case '%p': { // TODO this is a hack
fields.push(function(x) {
if (hour == 12) {
if (x == "am") hour = 0;
} else if (x == "pm") {
hour = Number(hour) + 12;
}
});
return "(am|pm)";
}
// TODO %r: %I:%M:%S %p
// TODO %R: %H:%M
case '%S': {
fields.push(function(x) { second = x; });
return "([0-9]+)";
}
// TODO %t: any white space
// TODO %T: %H:%M:%S
// TODO %U: week number [00,53]
// TODO %w: weekday [0,6]
// TODO %W: week number [00, 53]
// TODO %x: locale date (%m/%d/%y)
// TODO %X: locale time (%I:%M:%S %p)
case '%y': {
fields.push(function(x) {
x = Number(x);
year = x + (((0 <= x) && (x < 69)) ? 2000
: (((x >= 69) && (x < 100) ? 1900 : 0)));
});
return "([0-9]+)";
}
case '%Y': {
fields.push(function(x) { year = x; });
return "([0-9]+)";
}
case '%%': {
fields.push(function() {});
return "%";
}
}
return s;
});
var match = s.match(re);
if (match) match.forEach(function(m, i) { fields[i](m); });
return new Date(year, month, date, hour, minute, second);
};
return format;
};
/**
* Returns a time format of the given type, either "short" or "long".
*
* @class Represents a time format, converting between a <tt>number</tt>
* representing a duration in milliseconds, and a <tt>string</tt>. Two types of
* time formats are supported: "short" and "long". The <i>short</i> format type
* returns a string such as "3.3 days" or "12.1 minutes", while the <i>long</i>
* format returns "13:04:12" or similar.
*
* @extends pv.Format
* @param {string} type the type; "short" or "long".
*/
pv.Format.time = function(type) {
var pad = pv.Format.pad;
/*
* MILLISECONDS = 1
* SECONDS = 1e3
* MINUTES = 6e4
* HOURS = 36e5
* DAYS = 864e5
* WEEKS = 6048e5
* MONTHS = 2592e6
* YEARS = 31536e6
*/
/** @private */
function format(t) {
t = Number(t); // force conversion from Date
switch (type) {
case "short": {
if (t >= 31536e6) {
return (t / 31536e6).toFixed(1) + " years";
} else if (t >= 6048e5) {
return (t / 6048e5).toFixed(1) + " weeks";
} else if (t >= 864e5) {
return (t / 864e5).toFixed(1) + " days";
} else if (t >= 36e5) {
return (t / 36e5).toFixed(1) + " hours";
} else if (t >= 6e4) {
return (t / 6e4).toFixed(1) + " minutes";
}
return (t / 1e3).toFixed(1) + " seconds";
}
case "long": {
var a = [],
s = ((t % 6e4) / 1e3) >> 0,
m = ((t % 36e5) / 6e4) >> 0;
a.push(pad("0", 2, s));
if (t >= 36e5) {
var h = ((t % 864e5) / 36e5) >> 0;
a.push(pad("0", 2, m));
if (t >= 864e5) {
a.push(pad("0", 2, h));
a.push(Math.floor(t / 864e5).toFixed());
} else {
a.push(h.toFixed());
}
} else {
a.push(m.toFixed());
}
return a.reverse().join(":");
}
}
}
/**
* Formats the specified time, returning the string representation.
*
* @function
* @name pv.Format.time.prototype.format
* @param {number} t the duration in milliseconds. May also be a <tt>Date</tt>.
* @returns {string} the formatted string.
*/
format.format = format;
/**
* Parses the specified string, returning the time in milliseconds.
*
* @function
* @name pv.Format.time.prototype.parse
* @param {string} s a formatted string.
* @returns {number} the parsed duration in milliseconds.
*/
format.parse = function(s) {
switch (type) {
case "short": {
var re = /([0-9,.]+)\s*([a-z]+)/g, a, t = 0;
while (a = re.exec(s)) {
var f = parseFloat(a[0].replace(",", "")), u = 0;
switch (a[2].toLowerCase()) {
case "year": case "years": u = 31536e6; break;
case "week": case "weeks": u = 6048e5; break;
case "day": case "days": u = 864e5; break;
case "hour": case "hours": u = 36e5; break;
case "minute": case "minutes": u = 6e4; break;
case "second": case "seconds": u = 1e3; break;
}
t += f * u;
}
return t;
}
case "long": {
var a = s.replace(",", "").split(":").reverse(), t = 0;
if (a.length) t += parseFloat(a[0]) * 1e3;
if (a.length > 1) t += parseFloat(a[1]) * 6e4;
if (a.length > 2) t += parseFloat(a[2]) * 36e5;
if (a.length > 3) t += parseFloat(a[3]) * 864e5;
return t;
}
}
}
return format;
};
/**
* Returns a default number format.
*
* @class Represents a number format, converting between a <tt>number</tt> and a
* <tt>string</tt>. This class allows numbers to be formatted with variable
* precision (both for the integral and fractional part of the number), optional
* thousands grouping, and optional padding. The thousands (",") and decimal
* (".") separator can be customized.
*
* @returns {pv.Format.number} a number format.
*/
pv.Format.number = function() {
var mini = 0, // default minimum integer digits
maxi = Infinity, // default maximum integer digits
mins = 0, // mini, including group separators
minf = 0, // default minimum fraction digits
maxf = 0, // default maximum fraction digits
maxk = 1, // 10^maxf
padi = "0", // default integer pad
padf = "0", // default fraction pad
padg = true, // whether group separator affects integer padding
decimal = ".", // default decimal separator
group = ",", // default group separator
np = "\u2212", // default negative prefix
ns = ""; // default negative suffix
/** @private */
function format(x) {
/* Round the fractional part, and split on decimal separator. */
if (Infinity > maxf) x = Math.round(x * maxk) / maxk;
var s = String(Math.abs(x)).split(".");
/* Pad, truncate and group the integral part. */
var i = s[0];
if (i.length > maxi) i = i.substring(i.length - maxi);
if (padg && (i.length < mini)) i = new Array(mini - i.length + 1).join(padi) + i;
if (i.length > 3) i = i.replace(/\B(?=(?:\d{3})+(?!\d))/g, group);
if (!padg && (i.length < mins)) i = new Array(mins - i.length + 1).join(padi) + i;
s[0] = x < 0 ? np + i + ns : i;
/* Pad the fractional part. */
var f = s[1] || "";
if (f.length < minf) s[1] = f + new Array(minf - f.length + 1).join(padf);
return s.join(decimal);
}
/**
* @function
* @name pv.Format.number.prototype.format
* @param {number} x
* @returns {string}
*/
format.format = format;
/**
* Parses the specified string as a number. Before parsing, leading and
* trailing padding is removed. Group separators are also removed, and the
* decimal separator is replaced with the standard point ("."). The integer
* part is truncated per the maximum integer digits, and the fraction part is
* rounded per the maximum fraction digits.
*
* @function
* @name pv.Format.number.prototype.parse
* @param {string} x the string to parse.
* @returns {number} the parsed number.
*/
format.parse = function(x) {
var re = pv.Format.re;
/* Remove leading and trailing padding. Split on the decimal separator. */
var s = String(x)
.replace(new RegExp("^(" + re(padi) + ")*"), "")
.replace(new RegExp("(" + re(padf) + ")*$"), "")
.split(decimal);
/* Remove grouping and truncate the integral part. */
var i = s[0].replace(new RegExp(re(group), "g"), "");
if (i.length > maxi) i = i.substring(i.length - maxi);
/* Round the fractional part. */
var f = s[1] ? Number("0." + s[1]) : 0;
if (Infinity > maxf) f = Math.round(f * maxk) / maxk;
return Math.round(i) + f;
};
/**
* Sets or gets the minimum and maximum number of integer digits. This
* controls the number of decimal digits to display before the decimal
* separator for the integral part of the number. If the number of digits is
* smaller than the minimum, the digits are padded; if the number of digits is
* larger, the digits are truncated, showing only the lower-order digits. The
* default range is [0, Infinity].
*
* <p>If only one argument is specified to this method, this value is used as
* both the minimum and maximum number. If no arguments are specified, a
* two-element array is returned containing the minimum and the maximum.
*
* @function
* @name pv.Format.number.prototype.integerDigits
* @param {number} [min] the minimum integer digits.
* @param {number} [max] the maximum integer digits.
* @returns {pv.Format.number} <tt>this</tt>, or the current integer digits.
*/
format.integerDigits = function(min, max) {
if (arguments.length) {
mini = Number(min);
maxi = (arguments.length > 1) ? Number(max) : mini;
mins = mini + Math.floor(mini / 3) * group.length;
return this;
}
return [mini, maxi];
};
/**
* Sets or gets the minimum and maximum number of fraction digits. The
* controls the number of decimal digits to display after the decimal
* separator for the fractional part of the number. If the number of digits is
* smaller than the minimum, the digits are padded; if the number of digits is
* larger, the fractional part is rounded, showing only the higher-order
* digits. The default range is [0, 0].
*
* <p>If only one argument is specified to this method, this value is used as
* both the minimum and maximum number. If no arguments are specified, a
* two-element array is returned containing the minimum and the maximum.
*
* @function
* @name pv.Format.number.prototype.fractionDigits
* @param {number} [min] the minimum fraction digits.
* @param {number} [max] the maximum fraction digits.
* @returns {pv.Format.number} <tt>this</tt>, or the current fraction digits.
*/
format.fractionDigits = function(min, max) {
if (arguments.length) {
minf = Number(min);
maxf = (arguments.length > 1) ? Number(max) : minf;
maxk = Math.pow(10, maxf);
return this;
}
return [minf, maxf];
};
/**
* Sets or gets the character used to pad the integer part. The integer pad is
* used when the number of integer digits is smaller than the minimum. The
* default pad character is "0" (zero).
*
* @param {string} [x] the new pad character.
* @returns {pv.Format.number} <tt>this</tt> or the current pad character.
*/
format.integerPad = function(x) {
if (arguments.length) {
padi = String(x);
padg = /\d/.test(padi);
return this;
}
return padi;
};
/**
* Sets or gets the character used to pad the fration part. The fraction pad
* is used when the number of fraction digits is smaller than the minimum. The
* default pad character is "0" (zero).
*
* @param {string} [x] the new pad character.
* @returns {pv.Format.number} <tt>this</tt> or the current pad character.
*/
format.fractionPad = function(x) {
if (arguments.length) {
padf = String(x);
return this;
}
return padf;
};
/**
* Sets or gets the character used as the decimal point, separating the
* integer and fraction parts of the number. The default decimal point is ".".
*
* @param {string} [x] the new decimal separator.
* @returns {pv.Format.number} <tt>this</tt> or the current decimal separator.
*/
format.decimal = function(x) {
if (arguments.length) {
decimal = String(x);
return this;
}
return decimal;
};
/**
* Sets or gets the character used as the group separator, grouping integer
* digits by thousands. The default decimal point is ",". Grouping can be
* disabled by using "" for the separator.
*
* @param {string} [x] the new group separator.
* @returns {pv.Format.number} <tt>this</tt> or the current group separator.
*/
format.group = function(x) {
if (arguments.length) {
group = x ? String(x) : "";
mins = mini + Math.floor(mini / 3) * group.length;
return this;
}
return group;
};
/**
* Sets or gets the negative prefix and suffix. The default negative prefix is
* "&minus;", and the default negative suffix is the empty string.
*
* @param {string} [x] the negative prefix.
* @param {string} [y] the negative suffix.
* @returns {pv.Format.number} <tt>this</tt> or the current negative format.
*/
format.negativeAffix = function(x, y) {
if (arguments.length) {
np = String(x || "");
ns = String(y || "");
return this;
}
return [np, ns];
};
return format;
};
/**
* @private A private variant of Array.prototype.map that supports the index
* property.
*/
pv.map = function(array, f) {
var o = {};
return f
? array.map(function(d, i) { o.index = i; return f.call(o, d); })
: array.slice();
};
/**
* Concatenates the specified array with itself <i>n</i> times. For example,
* <tt>pv.repeat([1, 2])</tt> returns [1, 2, 1, 2].
*
* @param {array} a an array.
* @param {number} [n] the number of times to repeat; defaults to two.
* @returns {array} an array that repeats the specified array.
*/
pv.repeat = function(array, n) {
if (arguments.length == 1) n = 2;
return pv.blend(pv.range(n).map(function() { return array; }));
};
/**
* Given two arrays <tt>a</tt> and <tt>b</tt>, <style
* type="text/css">sub{line-height:0}</style> returns an array of all possible
* pairs of elements [a<sub>i</sub>, b<sub>j</sub>]. The outer loop is on array
* <i>a</i>, while the inner loop is on <i>b</i>, such that the order of
* returned elements is [a<sub>0</sub>, b<sub>0</sub>], [a<sub>0</sub>,
* b<sub>1</sub>], ... [a<sub>0</sub>, b<sub>m</sub>], [a<sub>1</sub>,
* b<sub>0</sub>], [a<sub>1</sub>, b<sub>1</sub>], ... [a<sub>1</sub>,
* b<sub>m</sub>], ... [a<sub>n</sub>, b<sub>m</sub>]. If either array is empty,
* an empty array is returned.
*
* @param {array} a an array.
* @param {array} b an array.
* @returns {array} an array of pairs of elements in <tt>a</tt> and <tt>b</tt>.
*/
pv.cross = function(a, b) {
var array = [];
for (var i = 0, n = a.length, m = b.length; i < n; i++) {
for (var j = 0, x = a[i]; j < m; j++) {
array.push([x, b[j]]);
}
}
return array;
};
/**
* Given the specified array of arrays, concatenates the arrays into a single
* array. If the individual arrays are explicitly known, an alternative to blend
* is to use JavaScript's <tt>concat</tt> method directly. These two equivalent
* expressions:<ul>
*
* <li><tt>pv.blend([[1, 2, 3], ["a", "b", "c"]])</tt>
* <li><tt>[1, 2, 3].concat(["a", "b", "c"])</tt>
*
* </ul>return [1, 2, 3, "a", "b", "c"].
*
* @param {array[]} arrays an array of arrays.
* @returns {array} an array containing all the elements of each array in
* <tt>arrays</tt>.
*/
pv.blend = function(arrays) {
return Array.prototype.concat.apply([], arrays);
};
/**
* Given the specified array of arrays, <style
* type="text/css">sub{line-height:0}</style> transposes each element
* array<sub>ij</sub> with array<sub>ji</sub>. If the array has dimensions
* <i>n</i>&times;<i>m</i>, it will have dimensions <i>m</i>&times;<i>n</i>
* after this method returns. This method transposes the elements of the array
* in place, mutating the array, and returning a reference to the array.
*
* @param {array[]} arrays an array of arrays.
* @returns {array[]} the passed-in array, after transposing the elements.
*/
pv.transpose = function(arrays) {
var n = arrays.length, m = pv.max(arrays, function(d) { return d.length; });
if (m > n) {
arrays.length = m;
for (var i = n; i < m; i++) {
arrays[i] = new Array(n);
}
for (var i = 0; i < n; i++) {
for (var j = i + 1; j < m; j++) {
var t = arrays[i][j];
arrays[i][j] = arrays[j][i];
arrays[j][i] = t;
}
}
} else {
for (var i = 0; i < m; i++) {
arrays[i].length = n;
}
for (var i = 0; i < n; i++) {
for (var j = 0; j < i; j++) {
var t = arrays[i][j];
arrays[i][j] = arrays[j][i];
arrays[j][i] = t;
}
}
}
arrays.length = m;
for (var i = 0; i < m; i++) {
arrays[i].length = n;
}
return arrays;
};
/**
* Returns a normalized copy of the specified array, such that the sum of the
* returned elements sum to one. If the specified array is not an array of
* numbers, an optional accessor function <tt>f</tt> can be specified to map the
* elements to numbers. For example, if <tt>array</tt> is an array of objects,
* and each object has a numeric property "foo", the expression
*
* <pre>pv.normalize(array, function(d) d.foo)</pre>
*
* returns a normalized array on the "foo" property. If an accessor function is
* not specified, the identity function is used. Accessor functions can refer to
* <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number[]} an array of numbers that sums to one.
*/
pv.normalize = function(array, f) {
var norm = pv.map(array, f), sum = pv.sum(norm);
for (var i = 0; i < norm.length; i++) norm[i] /= sum;
return norm;
};
/**
* Returns a permutation of the specified array, using the specified array of
* indexes. The returned array contains the corresponding element in
* <tt>array</tt> for each index in <tt>indexes</tt>, in order. For example,
*
* <pre>pv.permute(["a", "b", "c"], [1, 2, 0])</pre>
*
* returns <tt>["b", "c", "a"]</tt>. It is acceptable for the array of indexes
* to be a different length from the array of elements, and for indexes to be
* duplicated or omitted. The optional accessor function <tt>f</tt> can be used
* to perform a simultaneous mapping of the array elements. Accessor functions
* can refer to <tt>this.index</tt>.
*
* @param {array} array an array.
* @param {number[]} indexes an array of indexes into <tt>array</tt>.
* @param {function} [f] an optional accessor function.
* @returns {array} an array of elements from <tt>array</tt>; a permutation.
*/
pv.permute = function(array, indexes, f) {
if (!f) f = pv.identity;
var p = new Array(indexes.length), o = {};
indexes.forEach(function(j, i) { o.index = j; p[i] = f.call(o, array[j]); });
return p;
};
/**
* Returns a map from key to index for the specified <tt>keys</tt> array. For
* example,
*
* <pre>pv.numerate(["a", "b", "c"])</pre>
*
* returns <tt>{a: 0, b: 1, c: 2}</tt>. Note that since JavaScript maps only
* support string keys, <tt>keys</tt> must contain strings, or other values that
* naturally map to distinct string values. Alternatively, an optional accessor
* function <tt>f</tt> can be specified to compute the string key for the given
* element. Accessor functions can refer to <tt>this.index</tt>.
*
* @param {array} keys an array, usually of string keys.
* @param {function} [f] an optional key function.
* @returns a map from key to index.
*/
pv.numerate = function(keys, f) {
if (!f) f = pv.identity;
var map = {}, o = {};
keys.forEach(function(x, i) { o.index = i; map[f.call(o, x)] = i; });
return map;
};
/**
* Returns the unique elements in the specified array, in the order they appear.
* Note that since JavaScript maps only support string keys, <tt>array</tt> must
* contain strings, or other values that naturally map to distinct string
* values. Alternatively, an optional accessor function <tt>f</tt> can be
* specified to compute the string key for the given element. Accessor functions
* can refer to <tt>this.index</tt>.
*
* @param {array} array an array, usually of string keys.
* @param {function} [f] an optional key function.
* @returns {array} the unique values.
*/
pv.uniq = function(array, f) {
if (!f) f = pv.identity;
var map = {}, keys = [], o = {}, y;
array.forEach(function(x, i) {
o.index = i;
y = f.call(o, x);
if (!(y in map)) map[y] = keys.push(y);
});
return keys;
};
/**
* The comparator function for natural order. This can be used in conjunction with
* the built-in array <tt>sort</tt> method to sort elements by their natural
* order, ascending. Note that if no comparator function is specified to the
* built-in <tt>sort</tt> method, the default order is lexicographic, <i>not</i>
* natural!
*
* @see <a
* href="http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/sort">Array.sort</a>.
* @param a an element to compare.
* @param b an element to compare.
* @returns {number} negative if a &lt; b; positive if a &gt; b; otherwise 0.
*/
pv.naturalOrder = function(a, b) {
return (a < b) ? -1 : ((a > b) ? 1 : 0);
};
/**
* The comparator function for reverse natural order. This can be used in
* conjunction with the built-in array <tt>sort</tt> method to sort elements by
* their natural order, descending. Note that if no comparator function is
* specified to the built-in <tt>sort</tt> method, the default order is
* lexicographic, <i>not</i> natural!
*
* @see #naturalOrder
* @param a an element to compare.
* @param b an element to compare.
* @returns {number} negative if a &lt; b; positive if a &gt; b; otherwise 0.
*/
pv.reverseOrder = function(b, a) {
return (a < b) ? -1 : ((a > b) ? 1 : 0);
};
/**
* Searches the specified array of numbers for the specified value using the
* binary search algorithm. The array must be sorted (as by the <tt>sort</tt>
* method) prior to making this call. If it is not sorted, the results are
* undefined. If the array contains multiple elements with the specified value,
* there is no guarantee which one will be found.
*
* <p>The <i>insertion point</i> is defined as the point at which the value
* would be inserted into the array: the index of the first element greater than
* the value, or <tt>array.length</tt>, if all elements in the array are less
* than the specified value. Note that this guarantees that the return value
* will be nonnegative if and only if the value is found.
*
* @param {number[]} array the array to be searched.
* @param {number} value the value to be searched for.
* @returns the index of the search value, if it is contained in the array;
* otherwise, (-(<i>insertion point</i>) - 1).
* @param {function} [f] an optional key function.
*/
pv.search = function(array, value, f) {
if (!f) f = pv.identity;
var low = 0, high = array.length - 1;
while (low <= high) {
var mid = (low + high) >> 1, midValue = f(array[mid]);
if (midValue < value) low = mid + 1;
else if (midValue > value) high = mid - 1;
else return mid;
}
return -low - 1;
};
pv.search.index = function(array, value, f) {
var i = pv.search(array, value, f);
return (i < 0) ? (-i - 1) : i;
};
/**
* Returns an array of numbers, starting at <tt>start</tt>, incrementing by
* <tt>step</tt>, until <tt>stop</tt> is reached. The stop value is
* exclusive. If only a single argument is specified, this value is interpeted
* as the <i>stop</i> value, with the <i>start</i> value as zero. If only two
* arguments are specified, the step value is implied to be one.
*
* <p>The method is modeled after the built-in <tt>range</tt> method from
* Python. See the Python documentation for more details.
*
* @see <a href="http://docs.python.org/library/functions.html#range">Python range</a>
* @param {number} [start] the start value.
* @param {number} stop the stop value.
* @param {number} [step] the step value.
* @returns {number[]} an array of numbers.
*/
pv.range = function(start, stop, step) {
if (arguments.length == 1) {
stop = start;
start = 0;
}
if (step == undefined) step = 1;
if ((stop - start) / step == Infinity) throw new Error("range must be finite");
var array = [], i = 0, j;
stop -= (stop - start) * 1e-10; // floating point precision!
if (step < 0) {
while ((j = start + step * i++) > stop) {
array.push(j);
}
} else {
while ((j = start + step * i++) < stop) {
array.push(j);
}
}
return array;
};
/**
* Returns a random number in the range [<tt>start</tt>, <tt>stop</tt>) that is
* a multiple of <tt>step</tt>. More specifically, the returned number is of the
* form <tt>start</tt> + <i>n</i> * <tt>step</tt>, where <i>n</i> is a
* nonnegative integer. If <tt>step</tt> is not specified, it defaults to 1,
* returning a random integer if <tt>start</tt> is also an integer.
*
* @param {number} [start] the start value value.
* @param {number} stop the stop value.
* @param {number} [step] the step value.
* @returns {number} a random number between <i>start</i> and <i>stop</i>.
*/
pv.random = function(start, stop, step) {
if (arguments.length == 1) {
stop = start;
start = 0;
}
if (step == undefined) step = 1;
return step
? (Math.floor(Math.random() * (stop - start) / step) * step + start)
: (Math.random() * (stop - start) + start);
};
/**
* Returns the sum of the specified array. If the specified array is not an
* array of numbers, an optional accessor function <tt>f</tt> can be specified
* to map the elements to numbers. See {@link #normalize} for an example.
* Accessor functions can refer to <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the sum of the specified array.
*/
pv.sum = function(array, f) {
var o = {};
return array.reduce(f
? function(p, d, i) { o.index = i; return p + f.call(o, d); }
: function(p, d) { return p + d; }, 0);
};
/**
* Returns the maximum value of the specified array. If the specified array is
* not an array of numbers, an optional accessor function <tt>f</tt> can be
* specified to map the elements to numbers. See {@link #normalize} for an
* example. Accessor functions can refer to <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the maximum value of the specified array.
*/
pv.max = function(array, f) {
if (f == pv.index) return array.length - 1;
return Math.max.apply(null, f ? pv.map(array, f) : array);
};
/**
* Returns the index of the maximum value of the specified array. If the
* specified array is not an array of numbers, an optional accessor function
* <tt>f</tt> can be specified to map the elements to numbers. See
* {@link #normalize} for an example. Accessor functions can refer to
* <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the index of the maximum value of the specified array.
*/
pv.max.index = function(array, f) {
if (!array.length) return -1;
if (f == pv.index) return array.length - 1;
if (!f) f = pv.identity;
var maxi = 0, maxx = -Infinity, o = {};
for (var i = 0; i < array.length; i++) {
o.index = i;
var x = f.call(o, array[i]);
if (x > maxx) {
maxx = x;
maxi = i;
}
}
return maxi;
}
/**
* Returns the minimum value of the specified array of numbers. If the specified
* array is not an array of numbers, an optional accessor function <tt>f</tt>
* can be specified to map the elements to numbers. See {@link #normalize} for
* an example. Accessor functions can refer to <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the minimum value of the specified array.
*/
pv.min = function(array, f) {
if (f == pv.index) return 0;
return Math.min.apply(null, f ? pv.map(array, f) : array);
};
/**
* Returns the index of the minimum value of the specified array. If the
* specified array is not an array of numbers, an optional accessor function
* <tt>f</tt> can be specified to map the elements to numbers. See
* {@link #normalize} for an example. Accessor functions can refer to
* <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the index of the minimum value of the specified array.
*/
pv.min.index = function(array, f) {
if (!array.length) return -1;
if (f == pv.index) return 0;
if (!f) f = pv.identity;
var mini = 0, minx = Infinity, o = {};
for (var i = 0; i < array.length; i++) {
o.index = i;
var x = f.call(o, array[i]);
if (x < minx) {
minx = x;
mini = i;
}
}
return mini;
}
/**
* Returns the arithmetic mean, or average, of the specified array. If the
* specified array is not an array of numbers, an optional accessor function
* <tt>f</tt> can be specified to map the elements to numbers. See
* {@link #normalize} for an example. Accessor functions can refer to
* <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the mean of the specified array.
*/
pv.mean = function(array, f) {
return pv.sum(array, f) / array.length;
};
/**
* Returns the median of the specified array. If the specified array is not an
* array of numbers, an optional accessor function <tt>f</tt> can be specified
* to map the elements to numbers. See {@link #normalize} for an example.
* Accessor functions can refer to <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the median of the specified array.
*/
pv.median = function(array, f) {
if (f == pv.index) return (array.length - 1) / 2;
array = pv.map(array, f).sort(pv.naturalOrder);
if (array.length % 2) return array[Math.floor(array.length / 2)];
var i = array.length / 2;
return (array[i - 1] + array[i]) / 2;
};
/**
* Returns the unweighted variance of the specified array. If the specified
* array is not an array of numbers, an optional accessor function <tt>f</tt>
* can be specified to map the elements to numbers. See {@link #normalize} for
* an example. Accessor functions can refer to <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the variance of the specified array.
*/
pv.variance = function(array, f) {
if (array.length < 1) return NaN;
if (array.length == 1) return 0;
var mean = pv.mean(array, f), sum = 0, o = {};
if (!f) f = pv.identity;
for (var i = 0; i < array.length; i++) {
o.index = i;
var d = f.call(o, array[i]) - mean;
sum += d * d;
}
return sum;
};
/**
* Returns an unbiased estimation of the standard deviation of a population,
* given the specified random sample. If the specified array is not an array of
* numbers, an optional accessor function <tt>f</tt> can be specified to map the
* elements to numbers. See {@link #normalize} for an example. Accessor
* functions can refer to <tt>this.index</tt>.
*
* @param {array} array an array of objects, or numbers.
* @param {function} [f] an optional accessor function.
* @returns {number} the standard deviation of the specified array.
*/
pv.deviation = function(array, f) {
return Math.sqrt(pv.variance(array, f) / (array.length - 1));
};
/**
* Returns the logarithm with a given base value.
*
* @param {number} x the number for which to compute the logarithm.
* @param {number} b the base of the logarithm.
* @returns {number} the logarithm value.
*/
pv.log = function(x, b) {
return Math.log(x) / Math.log(b);
};
/**
* Computes a zero-symmetric logarithm. Computes the logarithm of the absolute
* value of the input, and determines the sign of the output according to the
* sign of the input value.
*
* @param {number} x the number for which to compute the logarithm.
* @param {number} b the base of the logarithm.
* @returns {number} the symmetric log value.
*/
pv.logSymmetric = function(x, b) {
return (x == 0) ? 0 : ((x < 0) ? -pv.log(-x, b) : pv.log(x, b));
};
/**
* Computes a zero-symmetric logarithm, with adjustment to values between zero
* and the logarithm base. This adjustment introduces distortion for values less
* than the base number, but enables simultaneous plotting of log-transformed
* data involving both positive and negative numbers.
*
* @param {number} x the number for which to compute the logarithm.
* @param {number} b the base of the logarithm.
* @returns {number} the adjusted, symmetric log value.
*/
pv.logAdjusted = function(x, b) {
if (!isFinite(x)) return x;
var negative = x < 0;
if (x < b) x += (b - x) / b;
return negative ? -pv.log(x, b) : pv.log(x, b);
};
/**
* Rounds an input value down according to its logarithm. The method takes the
* floor of the logarithm of the value and then uses the resulting value as an
* exponent for the base value.
*
* @param {number} x the number for which to compute the logarithm floor.
* @param {number} b the base of the logarithm.
* @returns {number} the rounded-by-logarithm value.
*/
pv.logFloor = function(x, b) {
return (x > 0)
? Math.pow(b, Math.floor(pv.log(x, b)))
: -Math.pow(b, -Math.floor(-pv.log(-x, b)));
};
/**
* Rounds an input value up according to its logarithm. The method takes the
* ceiling of the logarithm of the value and then uses the resulting value as an
* exponent for the base value.
*
* @param {number} x the number for which to compute the logarithm ceiling.
* @param {number} b the base of the logarithm.
* @returns {number} the rounded-by-logarithm value.
*/
pv.logCeil = function(x, b) {
return (x > 0)
? Math.pow(b, Math.ceil(pv.log(x, b)))
: -Math.pow(b, -Math.ceil(-pv.log(-x, b)));
};
(function() {
var radians = Math.PI / 180,
degrees = 180 / Math.PI;
/** Returns the number of radians corresponding to the specified degrees. */
pv.radians = function(degrees) { return radians * degrees; };
/** Returns the number of degrees corresponding to the specified radians. */
pv.degrees = function(radians) { return degrees * radians; };
})();
/**
* Returns all of the property names (keys) of the specified object (a map). The
* order of the returned array is not defined.
*
* @param map an object.
* @returns {string[]} an array of strings corresponding to the keys.
* @see #entries
*/
pv.keys = function(map) {
var array = [];
for (var key in map) {
array.push(key);
}
return array;
};
/**
* Returns all of the entries (key-value pairs) of the specified object (a
* map). The order of the returned array is not defined. Each key-value pair is
* represented as an object with <tt>key</tt> and <tt>value</tt> attributes,
* e.g., <tt>{key: "foo", value: 42}</tt>.
*
* @param map an object.
* @returns {array} an array of key-value pairs corresponding to the keys.
*/
pv.entries = function(map) {
var array = [];
for (var key in map) {
array.push({ key: key, value: map[key] });
}
return array;
};
/**
* Returns all of the values (attribute values) of the specified object (a
* map). The order of the returned array is not defined.
*
* @param map an object.
* @returns {array} an array of objects corresponding to the values.
* @see #entries
*/
pv.values = function(map) {
var array = [];
for (var key in map) {
array.push(map[key]);
}
return array;
};
/**
* Returns a map constructed from the specified <tt>keys</tt>, using the
* function <tt>f</tt> to compute the value for each key. The single argument to
* the value function is the key. The callback is invoked only for indexes of
* the array which have assigned values; it is not invoked for indexes which
* have been deleted or which have never been assigned values.
*
* <p>For example, this expression creates a map from strings to string length:
*
* <pre>pv.dict(["one", "three", "seventeen"], function(s) s.length)</pre>
*
* The returned value is <tt>{one: 3, three: 5, seventeen: 9}</tt>. Accessor
* functions can refer to <tt>this.index</tt>.
*
* @param {array} keys an array.
* @param {function} f a value function.
* @returns a map from keys to values.
*/
pv.dict = function(keys, f) {
var m = {}, o = {};
for (var i = 0; i < keys.length; i++) {
if (i in keys) {
var k = keys[i];
o.index = i;
m[k] = f.call(o, k);
}
}
return m;
};
/**
* Returns a {@link pv.Dom} operator for the given map. This is a convenience
* factory method, equivalent to <tt>new pv.Dom(map)</tt>. To apply the operator
* and retrieve the root node, call {@link pv.Dom#root}; to retrieve all nodes
* flattened, use {@link pv.Dom#nodes}.
*
* @see pv.Dom
* @param map a map from which to construct a DOM.
* @returns {pv.Dom} a DOM operator for the specified map.
*/
pv.dom = function(map) {
return new pv.Dom(map);
};
/**
* Constructs a DOM operator for the specified map. This constructor should not
* be invoked directly; use {@link pv.dom} instead.
*
* @class Represets a DOM operator for the specified map. This allows easy
* transformation of a hierarchical JavaScript object (such as a JSON map) to a
* W3C Document Object Model hierarchy. For more information on which attributes
* and methods from the specification are supported, see {@link pv.Dom.Node}.
*
* <p>Leaves in the map are determined using an associated <i>leaf</i> function;
* see {@link #leaf}. By default, leaves are any value whose type is not
* "object", such as numbers or strings.
*
* @param map a map from which to construct a DOM.
*/
pv.Dom = function(map) {
this.$map = map;
};
/** @private The default leaf function. */
pv.Dom.prototype.$leaf = function(n) {
return typeof n != "object";
};
/**
* Sets or gets the leaf function for this DOM operator. The leaf function
* identifies which values in the map are leaves, and which are internal nodes.
* By default, objects are considered internal nodes, and primitives (such as
* numbers and strings) are considered leaves.
*
* @param {function} f the new leaf function.
* @returns the current leaf function, or <tt>this</tt>.
*/
pv.Dom.prototype.leaf = function(f) {
if (arguments.length) {
this.$leaf = f;
return this;
}
return this.$leaf;
};
/**
* Applies the DOM operator, returning the root node.
*
* @returns {pv.Dom.Node} the root node.
* @param {string} [nodeName] optional node name for the root.
*/
pv.Dom.prototype.root = function(nodeName) {
var leaf = this.$leaf, root = recurse(this.$map);
/** @private */
function recurse(map) {
var n = new pv.Dom.Node();
for (var k in map) {
var v = map[k];
n.appendChild(leaf(v) ? new pv.Dom.Node(v) : recurse(v)).nodeName = k;
}
return n;
}
root.nodeName = nodeName;
return root;
};
/**
* Applies the DOM operator, returning the array of all nodes in preorder
* traversal.
*
* @returns {array} the array of nodes in preorder traversal.
*/
pv.Dom.prototype.nodes = function() {
return this.root().nodes();
};
/**
* Constructs a DOM node for the specified value. Instances of this class are
* not typically created directly; instead they are generated from a JavaScript
* map using the {@link pv.Dom} operator.
*
* @class Represents a <tt>Node</tt> in the W3C Document Object Model.
*/
pv.Dom.Node = function(value) {
this.nodeValue = value;
this.childNodes = [];
};
/**
* The node name. When generated from a map, the node name corresponds to the
* key at the given level in the map. Note that the root node has no associated
* key, and thus has an undefined node name (and no <tt>parentNode</tt>).
*
* @type string
* @field pv.Dom.Node.prototype.nodeName
*/
/**
* The node value. When generated from a map, node value corresponds to the leaf
* value for leaf nodes, and is undefined for internal nodes.
*
* @field pv.Dom.Node.prototype.nodeValue
*/
/**
* The array of child nodes. This array is empty for leaf nodes. An easy way to
* check if child nodes exist is to query <tt>firstChild</tt>.
*
* @type array
* @field pv.Dom.Node.prototype.childNodes
*/
/**
* The parent node, which is null for root nodes.
*
* @type pv.Dom.Node
*/
pv.Dom.Node.prototype.parentNode = null;
/**
* The first child, which is null for leaf nodes.
*
* @type pv.Dom.Node
*/
pv.Dom.Node.prototype.firstChild = null;
/**
* The last child, which is null for leaf nodes.
*
* @type pv.Dom.Node
*/
pv.Dom.Node.prototype.lastChild = null;
/**
* The previous sibling node, which is null for the first child.
*
* @type pv.Dom.Node
*/
pv.Dom.Node.prototype.previousSibling = null;
/**
* The next sibling node, which is null for the last child.
*
* @type pv.Dom.Node
*/
pv.Dom.Node.prototype.nextSibling = null;
/**
* Removes the specified child node from this node.
*
* @throws Error if the specified child is not a child of this node.
* @returns {pv.Dom.Node} the removed child.
*/
pv.Dom.Node.prototype.removeChild = function(n) {
var i = this.childNodes.indexOf(n);
if (i == -1) throw new Error("child not found");
this.childNodes.splice(i, 1);
if (n.previousSibling) n.previousSibling.nextSibling = n.nextSibling;
else this.firstChild = n.nextSibling;
if (n.nextSibling) n.nextSibling.previousSibling = n.previousSibling;
else this.lastChild = n.previousSibling;
delete n.nextSibling;
delete n.previousSibling;
delete n.parentNode;
return n;
};
/**
* Appends the specified child node to this node. If the specified child is
* already part of the DOM, the child is first removed before being added to
* this node.
*
* @returns {pv.Dom.Node} the appended child.
*/
pv.Dom.Node.prototype.appendChild = function(n) {
if (n.parentNode) n.parentNode.removeChild(n);
n.parentNode = this;
n.previousSibling = this.lastChild;
if (this.lastChild) this.lastChild.nextSibling = n;
else this.firstChild = n;
this.lastChild = n;
this.childNodes.push(n);
return n;
};
/**
* Inserts the specified child <i>n</i> before the given reference child
* <i>r</i> of this node. If <i>r</i> is null, this method is equivalent to
* {@link #appendChild}. If <i>n</i> is already part of the DOM, it is first
* removed before being inserted.
*
* @throws Error if <i>r</i> is non-null and not a child of this node.
* @returns {pv.Dom.Node} the inserted child.
*/
pv.Dom.Node.prototype.insertBefore = function(n, r) {
if (!r) return this.appendChild(n);
var i = this.childNodes.indexOf(r);
if (i == -1) throw new Error("child not found");
if (n.parentNode) n.parentNode.removeChild(n);
n.parentNode = this;
n.nextSibling = r;
n.previousSibling = r.previousSibling;
if (r.previousSibling) {
r.previousSibling.nextSibling = n;
} else {
if (r == this.lastChild) this.lastChild = n;
this.firstChild = n;
}
this.childNodes.splice(i, 0, n);
return n;
};
/**
* Replaces the specified child <i>r</i> of this node with the node <i>n</i>. If
* <i>n</i> is already part of the DOM, it is first removed before being added.
*
* @throws Error if <i>r</i> is not a child of this node.
*/
pv.Dom.Node.prototype.replaceChild = function(n, r) {
var i = this.childNodes.indexOf(r);
if (i == -1) throw new Error("child not found");
if (n.parentNode) n.parentNode.removeChild(n);
n.parentNode = this;
n.nextSibling = r.nextSibling;
n.previousSibling = r.previousSibling;
if (r.previousSibling) r.previousSibling.nextSibling = n;
else this.firstChild = n;
if (r.nextSibling) r.nextSibling.previousSibling = n;
else this.lastChild = n;
this.childNodes[i] = n;
return r;
};
/**
* Visits each node in the tree in preorder traversal, applying the specified
* function <i>f</i>. The arguments to the function are:<ol>
*
* <li>The current node.
* <li>The current depth, starting at 0 for the root node.</ol>
*
* @param {function} f a function to apply to each node.
*/
pv.Dom.Node.prototype.visitBefore = function(f) {
function visit(n, i) {
f(n, i);
for (var c = n.firstChild; c; c = c.nextSibling) {
visit(c, i + 1);
}
}
visit(this, 0);
};
/**
* Visits each node in the tree in postorder traversal, applying the specified
* function <i>f</i>. The arguments to the function are:<ol>
*
* <li>The current node.
* <li>The current depth, starting at 0 for the root node.</ol>
*
* @param {function} f a function to apply to each node.
*/
pv.Dom.Node.prototype.visitAfter = function(f) {
function visit(n, i) {
for (var c = n.firstChild; c; c = c.nextSibling) {
visit(c, i + 1);
}
f(n, i);
}
visit(this, 0);
};
/**
* Sorts child nodes of this node, and all descendent nodes recursively, using
* the specified comparator function <tt>f</tt>. The comparator function is
* passed two nodes to compare.
*
* <p>Note: during the sort operation, the comparator function should not rely
* on the tree being well-formed; the values of <tt>previousSibling</tt> and
* <tt>nextSibling</tt> for the nodes being compared are not defined during the
* sort operation.
*
* @param {function} f a comparator function.
* @returns this.
*/
pv.Dom.Node.prototype.sort = function(f) {
if (this.firstChild) {
this.childNodes.sort(f);
var p = this.firstChild = this.childNodes[0], c;
delete p.previousSibling;
for (var i = 1; i < this.childNodes.length; i++) {
p.sort(f);
c = this.childNodes[i];
c.previousSibling = p;
p = p.nextSibling = c;
}
this.lastChild = p;
delete p.nextSibling;
p.sort(f);
}
return this;
};
/**
* Reverses all sibling nodes.
*
* @returns this.
*/
pv.Dom.Node.prototype.reverse = function() {
var childNodes = [];
this.visitAfter(function(n) {
while (n.lastChild) childNodes.push(n.removeChild(n.lastChild));
for (var c; c = childNodes.pop();) n.insertBefore(c, n.firstChild);
});
return this;
};
/** Returns all descendants of this node in preorder traversal. */
pv.Dom.Node.prototype.nodes = function() {
var array = [];
/** @private */
function flatten(node) {
array.push(node);
node.childNodes.forEach(flatten);
}
flatten(this, array);
return array;
};
/**
* Toggles the child nodes of this node. If this node is not yet toggled, this
* method removes all child nodes and appends them to a new <tt>toggled</tt>
* array attribute on this node. Otherwise, if this node is toggled, this method
* re-adds all toggled child nodes and deletes the <tt>toggled</tt> attribute.
*
* <p>This method has no effect if the node has no child nodes.
*
* @param {boolean} [recursive] whether the toggle should apply to descendants.
*/
pv.Dom.Node.prototype.toggle = function(recursive) {
if (recursive) return this.toggled
? this.visitBefore(function(n) { if (n.toggled) n.toggle(); })
: this.visitAfter(function(n) { if (!n.toggled) n.toggle(); });
var n = this;
if (n.toggled) {
for (var c; c = n.toggled.pop();) n.appendChild(c);
delete n.toggled;
} else if (n.lastChild) {
n.toggled = [];
while (n.lastChild) n.toggled.push(n.removeChild(n.lastChild));
}
};
/**
* Given a flat array of values, returns a simple DOM with each value wrapped by
* a node that is a child of the root node.
*
* @param {array} values.
* @returns {array} nodes.
*/
pv.nodes = function(values) {
var root = new pv.Dom.Node();
for (var i = 0; i < values.length; i++) {
root.appendChild(new pv.Dom.Node(values[i]));
}
return root.nodes();
};
/**
* Returns a {@link pv.Tree} operator for the specified array. This is a
* convenience factory method, equivalent to <tt>new pv.Tree(array)</tt>.
*
* @see pv.Tree
* @param {array} array an array from which to construct a tree.
* @returns {pv.Tree} a tree operator for the specified array.
*/
pv.tree = function(array) {
return new pv.Tree(array);
};
/**
* Constructs a tree operator for the specified array. This constructor should
* not be invoked directly; use {@link pv.tree} instead.
*
* @class Represents a tree operator for the specified array. The tree operator
* allows a hierarchical map to be constructed from an array; it is similar to
* the {@link pv.Nest} operator, except the hierarchy is derived dynamically
* from the array elements.
*
* <p>For example, given an array of size information for ActionScript classes:
*
* <pre>{ name: "flare.flex.FlareVis", size: 4116 },
* { name: "flare.physics.DragForce", size: 1082 },
* { name: "flare.physics.GravityForce", size: 1336 }, ...</pre>
*
* To facilitate visualization, it may be useful to nest the elements by their
* package hierarchy:
*
* <pre>var tree = pv.tree(classes)
* .keys(function(d) d.name.split("."))
* .map();</pre>
*
* The resulting tree is:
*
* <pre>{ flare: {
* flex: {
* FlareVis: {
* name: "flare.flex.FlareVis",
* size: 4116 } },
* physics: {
* DragForce: {
* name: "flare.physics.DragForce",
* size: 1082 },
* GravityForce: {
* name: "flare.physics.GravityForce",
* size: 1336 } },
* ... } }</pre>
*
* By specifying a value function,
*
* <pre>var tree = pv.tree(classes)
* .keys(function(d) d.name.split("."))
* .value(function(d) d.size)
* .map();</pre>
*
* we can further eliminate redundant data:
*
* <pre>{ flare: {
* flex: {
* FlareVis: 4116 },
* physics: {
* DragForce: 1082,
* GravityForce: 1336 },
* ... } }</pre>
*
* For visualizations with large data sets, performance improvements may be seen
* by storing the data in a tree format, and then flattening it into an array at
* runtime with {@link pv.Flatten}.
*
* @param {array} array an array from which to construct a tree.
*/
pv.Tree = function(array) {
this.array = array;
};
/**
* Assigns a <i>keys</i> function to this operator; required. The keys function
* returns an array of <tt>string</tt>s for each element in the associated
* array; these keys determine how the elements are nested in the tree. The
* returned keys should be unique for each element in the array; otherwise, the
* behavior of this operator is undefined.
*
* @param {function} k the keys function.
* @returns {pv.Tree} this.
*/
pv.Tree.prototype.keys = function(k) {
this.k = k;
return this;
};
/**
* Assigns a <i>value</i> function to this operator; optional. The value
* function specifies an optional transformation of the element in the array
* before it is inserted into the map. If no value function is specified, it is
* equivalent to using the identity function.
*
* @param {function} k the value function.
* @returns {pv.Tree} this.
*/
pv.Tree.prototype.value = function(v) {
this.v = v;
return this;
};
/**
* Returns a hierarchical map of values. The hierarchy is determined by the keys
* function; the values in the map are determined by the value function.
*
* @returns a hierarchical map of values.
*/
pv.Tree.prototype.map = function() {
var map = {}, o = {};
for (var i = 0; i < this.array.length; i++) {
o.index = i;
var value = this.array[i], keys = this.k.call(o, value), node = map;
for (var j = 0; j < keys.length - 1; j++) {
node = node[keys[j]] || (node[keys[j]] = {});
}
node[keys[j]] = this.v ? this.v.call(o, value) : value;
}
return map;
};
/**
* Returns a {@link pv.Nest} operator for the specified array. This is a
* convenience factory method, equivalent to <tt>new pv.Nest(array)</tt>.
*
* @see pv.Nest
* @param {array} array an array of elements to nest.
* @returns {pv.Nest} a nest operator for the specified array.
*/
pv.nest = function(array) {
return new pv.Nest(array);
};
/**
* Constructs a nest operator for the specified array. This constructor should
* not be invoked directly; use {@link pv.nest} instead.
*
* @class Represents a {@link Nest} operator for the specified array. Nesting
* allows elements in an array to be grouped into a hierarchical tree
* structure. The levels in the tree are specified by <i>key</i> functions. The
* leaf nodes of the tree can be sorted by value, while the internal nodes can
* be sorted by key. Finally, the tree can be returned either has a
* multidimensional array via {@link #entries}, or as a hierarchical map via
* {@link #map}. The {@link #rollup} routine similarly returns a map, collapsing
* the elements in each leaf node using a summary function.
*
* <p>For example, consider the following tabular data structure of Barley
* yields, from various sites in Minnesota during 1931-2:
*
* <pre>{ yield: 27.00, variety: "Manchuria", year: 1931, site: "University Farm" },
* { yield: 48.87, variety: "Manchuria", year: 1931, site: "Waseca" },
* { yield: 27.43, variety: "Manchuria", year: 1931, site: "Morris" }, ...</pre>
*
* To facilitate visualization, it may be useful to nest the elements first by
* year, and then by variety, as follows:
*
* <pre>var nest = pv.nest(yields)
* .key(function(d) d.year)
* .key(function(d) d.variety)
* .entries();</pre>
*
* This returns a nested array. Each element of the outer array is a key-values
* pair, listing the values for each distinct key:
*
* <pre>{ key: 1931, values: [
* { key: "Manchuria", values: [
* { yield: 27.00, variety: "Manchuria", year: 1931, site: "University Farm" },
* { yield: 48.87, variety: "Manchuria", year: 1931, site: "Waseca" },
* { yield: 27.43, variety: "Manchuria", year: 1931, site: "Morris" },
* ...
* ] },
* { key: "Glabron", values: [
* { yield: 43.07, variety: "Glabron", year: 1931, site: "University Farm" },
* { yield: 55.20, variety: "Glabron", year: 1931, site: "Waseca" },
* ...
* ] },
* ] },
* { key: 1932, values: ... }</pre>
*
* Further details, including sorting and rollup, is provided below on the
* corresponding methods.
*
* @param {array} array an array of elements to nest.
*/
pv.Nest = function(array) {
this.array = array;
this.keys = [];
};
/**
* Nests using the specified key function. Multiple keys may be added to the
* nest; the array elements will be nested in the order keys are specified.
*
* @param {function} key a key function; must return a string or suitable map
* key.
* @returns {pv.Nest} this.
*/
pv.Nest.prototype.key = function(key) {
this.keys.push(key);
return this;
};
/**
* Sorts the previously-added keys. The natural sort order is used by default
* (see {@link pv.naturalOrder}); if an alternative order is desired,
* <tt>order</tt> should be a comparator function. If this method is not called
* (i.e., keys are <i>unsorted</i>), keys will appear in the order they appear
* in the underlying elements array. For example,
*
* <pre>pv.nest(yields)
* .key(function(d) d.year)
* .key(function(d) d.variety)
* .sortKeys()
* .entries()</pre>
*
* groups yield data by year, then variety, and sorts the variety groups
* lexicographically (since the variety attribute is a string).
*
* <p>Key sort order is only used in conjunction with {@link #entries}, which
* returns an array of key-values pairs. If the nest is used to construct a
* {@link #map} instead, keys are unsorted.
*
* @param {function} [order] an optional comparator function.
* @returns {pv.Nest} this.
*/
pv.Nest.prototype.sortKeys = function(order) {
this.keys[this.keys.length - 1].order = order || pv.naturalOrder;
return this;
};
/**
* Sorts the leaf values. The natural sort order is used by default (see
* {@link pv.naturalOrder}); if an alternative order is desired, <tt>order</tt>
* should be a comparator function. If this method is not called (i.e., values
* are <i>unsorted</i>), values will appear in the order they appear in the
* underlying elements array. For example,
*
* <pre>pv.nest(yields)
* .key(function(d) d.year)
* .key(function(d) d.variety)
* .sortValues(function(a, b) a.yield - b.yield)
* .entries()</pre>
*
* groups yield data by year, then variety, and sorts the values for each
* variety group by yield.
*
* <p>Value sort order, unlike keys, applies to both {@link #entries} and
* {@link #map}. It has no effect on {@link #rollup}.
*
* @param {function} [order] an optional comparator function.
* @returns {pv.Nest} this.
*/
pv.Nest.prototype.sortValues = function(order) {
this.order = order || pv.naturalOrder;
return this;
};
/**
* Returns a hierarchical map of values. Each key adds one level to the
* hierarchy. With only a single key, the returned map will have a key for each
* distinct value of the key function; the correspond value with be an array of
* elements with that key value. If a second key is added, this will be a nested
* map. For example:
*
* <pre>pv.nest(yields)
* .key(function(d) d.variety)
* .key(function(d) d.site)
* .map()</pre>
*
* returns a map <tt>m</tt> such that <tt>m[variety][site]</tt> is an array, a subset of
* <tt>yields</tt>, with each element having the given variety and site.
*
* @returns a hierarchical map of values.
*/
pv.Nest.prototype.map = function() {
var map = {}, values = [];
/* Build the map. */
for (var i, j = 0; j < this.array.length; j++) {
var x = this.array[j];
var m = map;
for (i = 0; i < this.keys.length - 1; i++) {
var k = this.keys[i](x);
if (!m[k]) m[k] = {};
m = m[k];
}
k = this.keys[i](x);
if (!m[k]) {
var a = [];
values.push(a);
m[k] = a;
}
m[k].push(x);
}
/* Sort each leaf array. */
if (this.order) {
for (var i = 0; i < values.length; i++) {
values[i].sort(this.order);
}
}
return map;
};
/**
* Returns a hierarchical nested array. This method is similar to
* {@link pv.entries}, but works recursively on the entire hierarchy. Rather
* than returning a map like {@link #map}, this method returns a nested
* array. Each element of the array has a <tt>key</tt> and <tt>values</tt>
* field. For leaf nodes, the <tt>values</tt> array will be a subset of the
* underlying elements array; for non-leaf nodes, the <tt>values</tt> array will
* contain more key-values pairs.
*
* <p>For an example usage, see the {@link Nest} constructor.
*
* @returns a hierarchical nested array.
*/
pv.Nest.prototype.entries = function() {
/** Recursively extracts the entries for the given map. */
function entries(map) {
var array = [];
for (var k in map) {
var v = map[k];
array.push({ key: k, values: (v instanceof Array) ? v : entries(v) });
};
return array;
}
/** Recursively sorts the values for the given key-values array. */
function sort(array, i) {
var o = this.keys[i].order;
if (o) array.sort(function(a, b) { return o(a.key, b.key); });
if (++i < this.keys.length) {
for (var j = 0; j < array.length; j++) {
sort.call(this, array[j].values, i);
}
}
return array;
}
return sort.call(this, entries(this.map()), 0);
};
/**
* Returns a rollup map. The behavior of this method is the same as
* {@link #map}, except that the leaf values are replaced with the return value
* of the specified rollup function <tt>f</tt>. For example,
*
* <pre>pv.nest(yields)
* .key(function(d) d.site)
* .rollup(function(v) pv.median(v, function(d) d.yield))</pre>
*
* first groups yield data by site, and then returns a map from site to median
* yield for the given site.
*
* @see #map
* @param {function} f a rollup function.
* @returns a hierarchical map, with the leaf values computed by <tt>f</tt>.
*/
pv.Nest.prototype.rollup = function(f) {
/** Recursively descends to the leaf nodes (arrays) and does rollup. */
function rollup(map) {
for (var key in map) {
var value = map[key];
if (value instanceof Array) {
map[key] = f(value);
} else {
rollup(value);
}
}
return map;
}
return rollup(this.map());
};
/**
* Returns a {@link pv.Flatten} operator for the specified map. This is a
* convenience factory method, equivalent to <tt>new pv.Flatten(map)</tt>.
*
* @see pv.Flatten
* @param map a map to flatten.
* @returns {pv.Flatten} a flatten operator for the specified map.
*/
pv.flatten = function(map) {
return new pv.Flatten(map);
};
/**
* Constructs a flatten operator for the specified map. This constructor should
* not be invoked directly; use {@link pv.flatten} instead.
*
* @class Represents a flatten operator for the specified array. Flattening
* allows hierarchical maps to be flattened into an array. The levels in the
* input tree are specified by <i>key</i> functions.
*
* <p>For example, consider the following hierarchical data structure of Barley
* yields, from various sites in Minnesota during 1931-2:
*
* <pre>{ 1931: {
* Manchuria: {
* "University Farm": 27.00,
* "Waseca": 48.87,
* "Morris": 27.43,
* ... },
* Glabron: {
* "University Farm": 43.07,
* "Waseca": 55.20,
* ... } },
* 1932: {
* ... } }</pre>
*
* To facilitate visualization, it may be useful to flatten the tree into a
* tabular array:
*
* <pre>var array = pv.flatten(yields)
* .key("year")
* .key("variety")
* .key("site")
* .key("yield")
* .array();</pre>
*
* This returns an array of object elements. Each element in the array has
* attributes corresponding to this flatten operator's keys:
*
* <pre>{ site: "University Farm", variety: "Manchuria", year: 1931, yield: 27 },
* { site: "Waseca", variety: "Manchuria", year: 1931, yield: 48.87 },
* { site: "Morris", variety: "Manchuria", year: 1931, yield: 27.43 },
* { site: "University Farm", variety: "Glabron", year: 1931, yield: 43.07 },
* { site: "Waseca", variety: "Glabron", year: 1931, yield: 55.2 }, ...</pre>
*
* <p>The flatten operator is roughly the inverse of the {@link pv.Nest} and
* {@link pv.Tree} operators.
*
* @param map a map to flatten.
*/
pv.Flatten = function(map) {
this.map = map;
this.keys = [];
};
/**
* Flattens using the specified key function. Multiple keys may be added to the
* flatten; the tiers of the underlying tree must correspond to the specified
* keys, in order. The order of the returned array is undefined; however, you
* can easily sort it.
*
* @param {string} key the key name.
* @param {function} [f] an optional value map function.
* @returns {pv.Nest} this.
*/
pv.Flatten.prototype.key = function(key, f) {
this.keys.push({name: key, value: f});
delete this.$leaf;
return this;
};
/**
* Flattens using the specified leaf function. This is an alternative to
* specifying an explicit set of keys; the tiers of the underlying tree will be
* determined dynamically by recursing on the values, and the resulting keys
* will be stored in the entries <tt>keys</tt> attribute. The leaf function must
* return true for leaves, and false for internal nodes.
*
* @param {function} f a leaf function.
* @returns {pv.Nest} this.
*/
pv.Flatten.prototype.leaf = function(f) {
this.keys.length = 0;
this.$leaf = f;
return this;
};
/**
* Returns the flattened array. Each entry in the array is an object; each
* object has attributes corresponding to this flatten operator's keys.
*
* @returns an array of elements from the flattened map.
*/
pv.Flatten.prototype.array = function() {
var entries = [], stack = [], keys = this.keys, leaf = this.$leaf;
/* Recursively visit using the leaf function. */
if (leaf) {
function recurse(value, i) {
if (leaf(value)) {
entries.push({keys: stack.slice(), value: value});
} else {
for (var key in value) {
stack.push(key);
recurse(value[key], i + 1);
stack.pop();
}
}
}
recurse(this.map, 0);
return entries;
}
/* Recursively visits the specified value. */
function visit(value, i) {
if (i < keys.length - 1) {
for (var key in value) {
stack.push(key);
visit(value[key], i + 1);
stack.pop();
}
} else {
entries.push(stack.concat(value));
}
}
visit(this.map, 0);
return entries.map(function(stack) {
var m = {};
for (var i = 0; i < keys.length; i++) {
var k = keys[i], v = stack[i];
m[k.name] = k.value ? k.value.call(null, v) : v;
}
return m;
});
};
/**
* Returns a {@link pv.Vector} for the specified <i>x</i> and <i>y</i>
* coordinate. This is a convenience factory method, equivalent to <tt>new
* pv.Vector(x, y)</tt>.
*
* @see pv.Vector
* @param {number} x the <i>x</i> coordinate.
* @param {number} y the <i>y</i> coordinate.
* @returns {pv.Vector} a vector for the specified coordinates.
*/
pv.vector = function(x, y) {
return new pv.Vector(x, y);
};
/**
* Constructs a {@link pv.Vector} for the specified <i>x</i> and <i>y</i>
* coordinate. This constructor should not be invoked directly; use
* {@link pv.vector} instead.
*
* @class Represents a two-dimensional vector; a 2-tuple <i>&#x27e8;x,
* y&#x27e9;</i>. The intent of this class is to simplify vector math. Note that
* in performance-sensitive cases it may be more efficient to represent 2D
* vectors as simple objects with <tt>x</tt> and <tt>y</tt> attributes, rather
* than using instances of this class.
*
* @param {number} x the <i>x</i> coordinate.
* @param {number} y the <i>y</i> coordinate.
*/
pv.Vector = function(x, y) {
this.x = x;
this.y = y;
};
/**
* Returns a vector perpendicular to this vector: <i>&#x27e8;-y, x&#x27e9;</i>.
*
* @returns {pv.Vector} a perpendicular vector.
*/
pv.Vector.prototype.perp = function() {
return new pv.Vector(-this.y, this.x);
};
/**
* Returns a normalized copy of this vector: a vector with the same direction,
* but unit length. If this vector has zero length this method returns a copy of
* this vector.
*
* @returns {pv.Vector} a unit vector.
*/
pv.Vector.prototype.norm = function() {
var l = this.length();
return this.times(l ? (1 / l) : 1);
};
/**
* Returns the magnitude of this vector, defined as <i>sqrt(x * x + y * y)</i>.
*
* @returns {number} a length.
*/
pv.Vector.prototype.length = function() {
return Math.sqrt(this.x * this.x + this.y * this.y);
};
/**
* Returns a scaled copy of this vector: <i>&#x27e8;x * k, y * k&#x27e9;</i>.
* To perform the equivalent divide operation, use <i>1 / k</i>.
*
* @param {number} k the scale factor.
* @returns {pv.Vector} a scaled vector.
*/
pv.Vector.prototype.times = function(k) {
return new pv.Vector(this.x * k, this.y * k);
};
/**
* Returns this vector plus the vector <i>v</i>: <i>&#x27e8;x + v.x, y +
* v.y&#x27e9;</i>. If only one argument is specified, it is interpreted as the
* vector <i>v</i>.
*
* @param {number} x the <i>x</i> coordinate to add.
* @param {number} y the <i>y</i> coordinate to add.
* @returns {pv.Vector} a new vector.
*/
pv.Vector.prototype.plus = function(x, y) {
return (arguments.length == 1)
? new pv.Vector(this.x + x.x, this.y + x.y)
: new pv.Vector(this.x + x, this.y + y);
};
/**
* Returns this vector minus the vector <i>v</i>: <i>&#x27e8;x - v.x, y -
* v.y&#x27e9;</i>. If only one argument is specified, it is interpreted as the
* vector <i>v</i>.
*
* @param {number} x the <i>x</i> coordinate to subtract.
* @param {number} y the <i>y</i> coordinate to subtract.
* @returns {pv.Vector} a new vector.
*/
pv.Vector.prototype.minus = function(x, y) {
return (arguments.length == 1)
? new pv.Vector(this.x - x.x, this.y - x.y)
: new pv.Vector(this.x - x, this.y - y);
};
/**
* Returns the dot product of this vector and the vector <i>v</i>: <i>x * v.x +
* y * v.y</i>. If only one argument is specified, it is interpreted as the
* vector <i>v</i>.
*
* @param {number} x the <i>x</i> coordinate to dot.
* @param {number} y the <i>y</i> coordinate to dot.
* @returns {number} a dot product.
*/
pv.Vector.prototype.dot = function(x, y) {
return (arguments.length == 1)
? this.x * x.x + this.y * x.y
: this.x * x + this.y * y;
};
/**
* Returns a new identity transform.
*
* @class Represents a transformation matrix. The transformation matrix is
* limited to expressing translate and uniform scale transforms only; shearing,
* rotation, general affine, and other transforms are not supported.
*
* <p>The methods on this class treat the transform as immutable, returning a
* copy of the transformation matrix with the specified transform applied. Note,
* alternatively, that the matrix fields can be get and set directly.
*/
pv.Transform = function() {};
pv.Transform.prototype = {k: 1, x: 0, y: 0};
/**
* The scale magnitude; defaults to 1.
*
* @type number
* @name pv.Transform.prototype.k
*/
/**
* The x-offset; defaults to 0.
*
* @type number
* @name pv.Transform.prototype.x
*/
/**
* The y-offset; defaults to 0.
*
* @type number
* @name pv.Transform.prototype.y
*/
/**
* @private The identity transform.
*
* @type pv.Transform
*/
pv.Transform.identity = new pv.Transform();
// k 0 x 1 0 a k 0 ka+x
// 0 k y * 0 1 b = 0 k kb+y
// 0 0 1 0 0 1 0 0 1
/**
* Returns a translated copy of this transformation matrix.
*
* @param {number} x the x-offset.
* @param {number} y the y-offset.
* @returns {pv.Transform} the translated transformation matrix.
*/
pv.Transform.prototype.translate = function(x, y) {
var v = new pv.Transform();
v.k = this.k;
v.x = this.k * x + this.x;
v.y = this.k * y + this.y;
return v;
};
// k 0 x d 0 0 kd 0 x
// 0 k y * 0 d 0 = 0 kd y
// 0 0 1 0 0 1 0 0 1
/**
* Returns a scaled copy of this transformation matrix.
*
* @param {number} k
* @returns {pv.Transform} the scaled transformation matrix.
*/
pv.Transform.prototype.scale = function(k) {
var v = new pv.Transform();
v.k = this.k * k;
v.x = this.x;
v.y = this.y;
return v;
};
/**
* Returns the inverse of this transformation matrix.
*
* @returns {pv.Transform} the inverted transformation matrix.
*/
pv.Transform.prototype.invert = function() {
var v = new pv.Transform(), k = 1 / this.k;
v.k = k;
v.x = -this.x * k;
v.y = -this.y * k;
return v;
};
// k 0 x d 0 a kd 0 ka+x
// 0 k y * 0 d b = 0 kd kb+y
// 0 0 1 0 0 1 0 0 1
/**
* Returns this matrix post-multiplied by the specified matrix <i>m</i>.
*
* @param {pv.Transform} m
* @returns {pv.Transform} the post-multiplied transformation matrix.
*/
pv.Transform.prototype.times = function(m) {
var v = new pv.Transform();
v.k = this.k * m.k;
v.x = this.k * m.x + this.x;
v.y = this.k * m.y + this.y;
return v;
};
/**
* Abstract; see the various scale implementations.
*
* @class Represents a scale; a function that performs a transformation from
* data domain to visual range. For quantitative and quantile scales, the domain
* is expressed as numbers; for ordinal scales, the domain is expressed as
* strings (or equivalently objects with unique string representations). The
* "visual range" may correspond to pixel space, colors, font sizes, and the
* like.
*
* <p>Note that scales are functions, and thus can be used as properties
* directly, assuming that the data associated with a mark is a number. While
* this is convenient for single-use scales, frequently it is desirable to
* define scales globally:
*
* <pre>var y = pv.Scale.linear(0, 100).range(0, 640);</pre>
*
* The <tt>y</tt> scale can now be equivalently referenced within a property:
*
* <pre> .height(function(d) y(d))</pre>
*
* Alternatively, if the data are not simple numbers, the appropriate value can
* be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
* method similarly allows the data to be mapped to a numeric value before
* performing the linear transformation.
*
* @see pv.Scale.quantitative
* @see pv.Scale.quantile
* @see pv.Scale.ordinal
* @extends function
*/
pv.Scale = function() {};
/**
* @private Returns a function that interpolators from the start value to the
* end value, given a parameter <i>t</i> in [0, 1].
*
* @param start the start value.
* @param end the end value.
*/
pv.Scale.interpolator = function(start, end) {
if (typeof start == "number") {
return function(t) {
return t * (end - start) + start;
};
}
/* For now, assume color. */
start = pv.color(start).rgb();
end = pv.color(end).rgb();
return function(t) {
var a = start.a * (1 - t) + end.a * t;
if (a < 1e-5) a = 0; // avoid scientific notation
return (start.a == 0) ? pv.rgb(end.r, end.g, end.b, a)
: ((end.a == 0) ? pv.rgb(start.r, start.g, start.b, a)
: pv.rgb(
Math.round(start.r * (1 - t) + end.r * t),
Math.round(start.g * (1 - t) + end.g * t),
Math.round(start.b * (1 - t) + end.b * t), a));
};
};
/**
* Returns a view of this scale by the specified accessor function <tt>f</tt>.
* Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
* <tt>function(d) y(d.foo)</tt>.
*
* <p>This method is provided for convenience, such that scales can be
* succinctly defined inline. For example, given an array of data elements that
* have a <tt>score</tt> attribute with the domain [0, 1], the height property
* could be specified as:
*
* <pre> .height(pv.Scale.linear().range(0, 480).by(function(d) d.score))</pre>
*
* This is equivalent to:
*
* <pre> .height(function(d) d.score * 480)</pre>
*
* This method should be used judiciously; it is typically more clear to invoke
* the scale directly, passing in the value to be scaled.
*
* @function
* @name pv.Scale.prototype.by
* @param {function} f an accessor function.
* @returns {pv.Scale} a view of this scale by the specified accessor function.
*/
/**
* Returns a default quantitative, linear, scale for the specified domain. The
* arguments to this constructor are optional, and equivalent to calling
* {@link #domain}. The default domain and range are [0,1].
*
* <p>This constructor is typically not used directly; see one of the
* quantitative scale implementations instead.
*
* @class Represents an abstract quantitative scale; a function that performs a
* numeric transformation. This class is typically not used directly; see one of
* the quantitative scale implementations (linear, log, root, etc.)
* instead. <style type="text/css">sub{line-height:0}</style> A quantitative
* scale represents a 1-dimensional transformation from a numeric domain of
* input data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to a numeric range of
* pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>]. In addition to
* readability, scales offer several useful features:
*
* <p>1. The range can be expressed in colors, rather than pixels. For example:
*
* <pre> .fillStyle(pv.Scale.linear(0, 100).range("red", "green"))</pre>
*
* will fill the marks "red" on an input value of 0, "green" on an input value
* of 100, and some color in-between for intermediate values.
*
* <p>2. The domain and range can be subdivided for a non-uniform
* transformation. For example, you may want a diverging color scale that is
* increasingly red for negative values, and increasingly green for positive
* values:
*
* <pre> .fillStyle(pv.Scale.linear(-1, 0, 1).range("red", "white", "green"))</pre>
*
* The domain can be specified as a series of <i>n</i> monotonically-increasing
* values; the range must also be specified as <i>n</i> values, resulting in
* <i>n - 1</i> contiguous linear scales.
*
* <p>3. Quantitative scales can be inverted for interaction. The
* {@link #invert} method takes a value in the output range, and returns the
* corresponding value in the input domain. This is frequently used to convert
* the mouse location (see {@link pv.Mark#mouse}) to a value in the input
* domain. Note that inversion is only supported for numeric ranges, and not
* colors.
*
* <p>4. A scale can be queried for reasonable "tick" values. The {@link #ticks}
* method provides a convenient way to get a series of evenly-spaced rounded
* values in the input domain. Frequently these are used in conjunction with
* {@link pv.Rule} to display tick marks or grid lines.
*
* <p>5. A scale can be "niced" to extend the domain to suitable rounded
* numbers. If the minimum and maximum of the domain are messy because they are
* derived from data, you can use {@link #nice} to round these values down and
* up to even numbers.
*
* @param {number...} domain... optional domain values.
* @see pv.Scale.linear
* @see pv.Scale.log
* @see pv.Scale.root
* @extends pv.Scale
*/
pv.Scale.quantitative = function() {
var d = [0, 1], // default domain
l = [0, 1], // default transformed domain
r = [0, 1], // default range
i = [pv.identity], // default interpolators
type = Number, // default type
n = false, // whether the domain is negative
f = pv.identity, // default forward transform
g = pv.identity, // default inverse transform
tickFormat = String; // default tick formatting function
/** @private */
function newDate(x) {
return new Date(x);
}
/** @private */
function scale(x) {
var j = pv.search(d, x);
if (j < 0) j = -j - 2;
j = Math.max(0, Math.min(i.length - 1, j));
return i[j]((f(x) - l[j]) / (l[j + 1] - l[j]));
}
/** @private */
scale.transform = function(forward, inverse) {
/** @ignore */ f = function(x) { return n ? -forward(-x) : forward(x); };
/** @ignore */ g = function(y) { return n ? -inverse(-y) : inverse(y); };
l = d.map(f);
return this;
};
/**
* Sets or gets the input domain. This method can be invoked several ways:
*
* <p>1. <tt>domain(min, ..., max)</tt>
*
* <p>Specifying the domain as a series of numbers is the most explicit and
* recommended approach. Most commonly, two numbers are specified: the minimum
* and maximum value. However, for a diverging scale, or other subdivided
* non-uniform scales, multiple values can be specified. Values can be derived
* from data using {@link pv.min} and {@link pv.max}. For example:
*
* <pre> .domain(0, pv.max(array))</pre>
*
* An alternative method for deriving minimum and maximum values from data
* follows.
*
* <p>2. <tt>domain(array, minf, maxf)</tt>
*
* <p>When both the minimum and maximum value are derived from data, the
* arguments to the <tt>domain</tt> method can be specified as the array of
* data, followed by zero, one or two accessor functions. For example, if the
* array of data is just an array of numbers:
*
* <pre> .domain(array)</pre>
*
* On the other hand, if the array elements are objects representing stock
* values per day, and the domain should consider the stock's daily low and
* daily high:
*
* <pre> .domain(array, function(d) d.low, function(d) d.high)</pre>
*
* The first method of setting the domain is preferred because it is more
* explicit; setting the domain using this second method should be used only
* if brevity is required.
*
* <p>3. <tt>domain()</tt>
*
* <p>Invoking the <tt>domain</tt> method with no arguments returns the
* current domain as an array of numbers.
*
* @function
* @name pv.Scale.quantitative.prototype.domain
* @param {number...} domain... domain values.
* @returns {pv.Scale.quantitative} <tt>this</tt>, or the current domain.
*/
scale.domain = function(array, min, max) {
if (arguments.length) {
var o; // the object we use to infer the domain type
if (array instanceof Array) {
if (arguments.length < 2) min = pv.identity;
if (arguments.length < 3) max = min;
o = array.length && min(array[0]);
d = array.length ? [pv.min(array, min), pv.max(array, max)] : [];
} else {
o = array;
d = Array.prototype.slice.call(arguments).map(Number);
}
if (!d.length) d = [-Infinity, Infinity];
else if (d.length == 1) d = [d[0], d[0]];
n = (d[0] || d[d.length - 1]) < 0;
l = d.map(f);
type = (o instanceof Date) ? newDate : Number;
return this;
}
return d.map(type);
};
/**
* Sets or gets the output range. This method can be invoked several ways:
*
* <p>1. <tt>range(min, ..., max)</tt>
*
* <p>The range may be specified as a series of numbers or colors. Most
* commonly, two numbers are specified: the minimum and maximum pixel values.
* For a color scale, values may be specified as {@link pv.Color}s or
* equivalent strings. For a diverging scale, or other subdivided non-uniform
* scales, multiple values can be specified. For example:
*
* <pre> .range("red", "white", "green")</pre>
*
* <p>Currently, only numbers and colors are supported as range values. The
* number of range values must exactly match the number of domain values, or
* the behavior of the scale is undefined.
*
* <p>2. <tt>range()</tt>
*
* <p>Invoking the <tt>range</tt> method with no arguments returns the current
* range as an array of numbers or colors.
*
* @function
* @name pv.Scale.quantitative.prototype.range
* @param {...} range... range values.
* @returns {pv.Scale.quantitative} <tt>this</tt>, or the current range.
*/
scale.range = function() {
if (arguments.length) {
r = Array.prototype.slice.call(arguments);
if (!r.length) r = [-Infinity, Infinity];
else if (r.length == 1) r = [r[0], r[0]];
i = [];
for (var j = 0; j < r.length - 1; j++) {
i.push(pv.Scale.interpolator(r[j], r[j + 1]));
}
return this;
}
return r;
};
/**
* Inverts the specified value in the output range, returning the
* corresponding value in the input domain. This is frequently used to convert
* the mouse location (see {@link pv.Mark#mouse}) to a value in the input
* domain. Inversion is only supported for numeric ranges, and not colors.
*
* <p>Note that this method does not do any rounding or bounds checking. If
* the input domain is discrete (e.g., an array index), the returned value
* should be rounded. If the specified <tt>y</tt> value is outside the range,
* the returned value may be equivalently outside the input domain.
*
* @function
* @name pv.Scale.quantitative.prototype.invert
* @param {number} y a value in the output range (a pixel location).
* @returns {number} a value in the input domain.
*/
scale.invert = function(y) {
var j = pv.search(r, y);
if (j < 0) j = -j - 2;
j = Math.max(0, Math.min(i.length - 1, j));
return type(g(l[j] + (y - r[j]) / (r[j + 1] - r[j]) * (l[j + 1] - l[j])));
};
/**
* Returns an array of evenly-spaced, suitably-rounded values in the input
* domain. This method attempts to return between 5 and 10 tick values. These
* values are frequently used in conjunction with {@link pv.Rule} to display
* tick marks or grid lines.
*
* @function
* @name pv.Scale.quantitative.prototype.ticks
* @param {number} [m] optional number of desired ticks.
* @returns {number[]} an array input domain values to use as ticks.
*/
scale.ticks = function(m) {
var start = d[0],
end = d[d.length - 1],
reverse = end < start,
min = reverse ? end : start,
max = reverse ? start : end,
span = max - min;
/* Special case: empty, invalid or infinite span. */
if (!span || !isFinite(span)) {
if (type == newDate) tickFormat = pv.Format.date("%x");
return [type(min)];
}
/* Special case: dates. */
if (type == newDate) {
/* Floor the date d given the precision p. */
function floor(d, p) {
switch (p) {
case 31536e6: d.setMonth(0);
case 2592e6: d.setDate(1);
case 6048e5: if (p == 6048e5) d.setDate(d.getDate() - d.getDay());
case 864e5: d.setHours(0);
case 36e5: d.setMinutes(0);
case 6e4: d.setSeconds(0);
case 1e3: d.setMilliseconds(0);
}
}
var precision, format, increment, step = 1;
if (span >= 3 * 31536e6) {
precision = 31536e6;
format = "%Y";
/** @ignore */ increment = function(d) { d.setFullYear(d.getFullYear() + step); };
} else if (span >= 3 * 2592e6) {
precision = 2592e6;
format = "%m/%Y";
/** @ignore */ increment = function(d) { d.setMonth(d.getMonth() + step); };
} else if (span >= 3 * 6048e5) {
precision = 6048e5;
format = "%m/%d";
/** @ignore */ increment = function(d) { d.setDate(d.getDate() + 7 * step); };
} else if (span >= 3 * 864e5) {
precision = 864e5;
format = "%m/%d";
/** @ignore */ increment = function(d) { d.setDate(d.getDate() + step); };
} else if (span >= 3 * 36e5) {
precision = 36e5;
format = "%I:%M %p";
/** @ignore */ increment = function(d) { d.setHours(d.getHours() + step); };
} else if (span >= 3 * 6e4) {
precision = 6e4;
format = "%I:%M %p";
/** @ignore */ increment = function(d) { d.setMinutes(d.getMinutes() + step); };
} else if (span >= 3 * 1e3) {
precision = 1e3;
format = "%I:%M:%S";
/** @ignore */ increment = function(d) { d.setSeconds(d.getSeconds() + step); };
} else {
precision = 1;
format = "%S.%Qs";
/** @ignore */ increment = function(d) { d.setTime(d.getTime() + step); };
}
tickFormat = pv.Format.date(format);
var date = new Date(min), dates = [];
floor(date, precision);
/* If we'd generate too many ticks, skip some!. */
var n = span / precision;
if (n > 10) {
switch (precision) {
case 36e5: {
step = (n > 20) ? 6 : 3;
date.setHours(Math.floor(date.getHours() / step) * step);
break;
}
case 2592e6: {
step = 3; // seasons
date.setMonth(Math.floor(date.getMonth() / step) * step);
break;
}
case 6e4: {
step = (n > 30) ? 15 : ((n > 15) ? 10 : 5);
date.setMinutes(Math.floor(date.getMinutes() / step) * step);
break;
}
case 1e3: {
step = (n > 90) ? 15 : ((n > 60) ? 10 : 5);
date.setSeconds(Math.floor(date.getSeconds() / step) * step);
break;
}
case 1: {
step = (n > 1000) ? 250 : ((n > 200) ? 100 : ((n > 100) ? 50 : ((n > 50) ? 25 : 5)));
date.setMilliseconds(Math.floor(date.getMilliseconds() / step) * step);
break;
}
default: {
step = pv.logCeil(n / 15, 10);
if (n / step < 2) step /= 5;
else if (n / step < 5) step /= 2;
date.setFullYear(Math.floor(date.getFullYear() / step) * step);
break;
}
}
}
while (true) {
increment(date);
if (date > max) break;
dates.push(new Date(date));
}
return reverse ? dates.reverse() : dates;
}
/* Normal case: numbers. */
if (!arguments.length) m = 10;
var step = pv.logFloor(span / m, 10),
err = m / (span / step);
if (err <= .15) step *= 10;
else if (err <= .35) step *= 5;
else if (err <= .75) step *= 2;
var start = Math.ceil(min / step) * step,
end = Math.floor(max / step) * step;
tickFormat = pv.Format.number()
.fractionDigits(Math.max(0, -Math.floor(pv.log(step, 10) + .01)));
var ticks = pv.range(start, end + step, step);
return reverse ? ticks.reverse() : ticks;
};
/**
* Formats the specified tick value using the appropriate precision, based on
* the step interval between tick marks. If {@link #ticks} has not been called,
* the argument is converted to a string, but no formatting is applied.
*
* @function
* @name pv.Scale.quantitative.prototype.tickFormat
* @param {number} t a tick value.
* @returns {string} a formatted tick value.
*/
scale.tickFormat = function (t) { return tickFormat(t); };
/**
* "Nices" this scale, extending the bounds of the input domain to
* evenly-rounded values. Nicing is useful if the domain is computed
* dynamically from data, and may be irregular. For example, given a domain of
* [0.20147987687960267, 0.996679553296417], a call to <tt>nice()</tt> might
* extend the domain to [0.2, 1].
*
* <p>This method must be invoked each time after setting the domain.
*
* @function
* @name pv.Scale.quantitative.prototype.nice
* @returns {pv.Scale.quantitative} <tt>this</tt>.
*/
scale.nice = function() {
if (d.length != 2) return this; // TODO support non-uniform domains
var start = d[0],
end = d[d.length - 1],
reverse = end < start,
min = reverse ? end : start,
max = reverse ? start : end,
span = max - min;
/* Special case: empty, invalid or infinite span. */
if (!span || !isFinite(span)) return this;
var step = Math.pow(10, Math.round(Math.log(span) / Math.log(10)) - 1);
d = [Math.floor(min / step) * step, Math.ceil(max / step) * step];
if (reverse) d.reverse();
l = d.map(f);
return this;
};
/**
* Returns a view of this scale by the specified accessor function <tt>f</tt>.
* Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
* <tt>function(d) y(d.foo)</tt>.
*
* <p>This method is provided for convenience, such that scales can be
* succinctly defined inline. For example, given an array of data elements
* that have a <tt>score</tt> attribute with the domain [0, 1], the height
* property could be specified as:
*
* <pre> .height(pv.Scale.linear().range(0, 480).by(function(d) d.score))</pre>
*
* This is equivalent to:
*
* <pre> .height(function(d) d.score * 480)</pre>
*
* This method should be used judiciously; it is typically more clear to
* invoke the scale directly, passing in the value to be scaled.
*
* @function
* @name pv.Scale.quantitative.prototype.by
* @param {function} f an accessor function.
* @returns {pv.Scale.quantitative} a view of this scale by the specified
* accessor function.
*/
scale.by = function(f) {
function by() { return scale(f.apply(this, arguments)); }
for (var method in scale) by[method] = scale[method];
return by;
};
scale.domain.apply(scale, arguments);
return scale;
};
/**
* Returns a linear scale for the specified domain. The arguments to this
* constructor are optional, and equivalent to calling {@link #domain}.
* The default domain and range are [0,1].
*
* @class Represents a linear scale; a function that performs a linear
* transformation. <style type="text/css">sub{line-height:0}</style> Most
* commonly, a linear scale represents a 1-dimensional linear transformation
* from a numeric domain of input data [<i>d<sub>0</sub></i>,
* <i>d<sub>1</sub></i>] to a numeric range of pixels [<i>r<sub>0</sub></i>,
* <i>r<sub>1</sub></i>]. The equation for such a scale is:
*
* <blockquote><i>f(x) = (x - d<sub>0</sub>) / (d<sub>1</sub> - d<sub>0</sub>) *
* (r<sub>1</sub> - r<sub>0</sub>) + r<sub>0</sub></i></blockquote>
*
* For example, a linear scale from the domain [0, 100] to range [0, 640]:
*
* <blockquote><i>f(x) = (x - 0) / (100 - 0) * (640 - 0) + 0</i><br>
* <i>f(x) = x / 100 * 640</i><br>
* <i>f(x) = x * 6.4</i><br>
* </blockquote>
*
* Thus, saying
*
* <pre> .height(function(d) d * 6.4)</pre>
*
* is identical to
*
* <pre> .height(pv.Scale.linear(0, 100).range(0, 640))</pre>
*
* Note that the scale is itself a function, and thus can be used as a property
* directly, assuming that the data associated with a mark is a number. While
* this is convenient for single-use scales, frequently it is desirable to
* define scales globally:
*
* <pre>var y = pv.Scale.linear(0, 100).range(0, 640);</pre>
*
* The <tt>y</tt> scale can now be equivalently referenced within a property:
*
* <pre> .height(function(d) y(d))</pre>
*
* Alternatively, if the data are not simple numbers, the appropriate value can
* be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
* method similarly allows the data to be mapped to a numeric value before
* performing the linear transformation.
*
* @param {number...} domain... optional domain values.
* @extends pv.Scale.quantitative
*/
pv.Scale.linear = function() {
var scale = pv.Scale.quantitative();
scale.domain.apply(scale, arguments);
return scale;
};
/**
* Returns a log scale for the specified domain. The arguments to this
* constructor are optional, and equivalent to calling {@link #domain}.
* The default domain is [1,10] and the default range is [0,1].
*
* @class Represents a log scale. <style
* type="text/css">sub{line-height:0}</style> Most commonly, a log scale
* represents a 1-dimensional log transformation from a numeric domain of input
* data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to a numeric range of
* pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>]. The equation for such a
* scale is:
*
* <blockquote><i>f(x) = (log(x) - log(d<sub>0</sub>)) / (log(d<sub>1</sub>) -
* log(d<sub>0</sub>)) * (r<sub>1</sub> - r<sub>0</sub>) +
* r<sub>0</sub></i></blockquote>
*
* where <i>log(x)</i> represents the zero-symmetric logarthim of <i>x</i> using
* the scale's associated base (default: 10, see {@link pv.logSymmetric}). For
* example, a log scale from the domain [1, 100] to range [0, 640]:
*
* <blockquote><i>f(x) = (log(x) - log(1)) / (log(100) - log(1)) * (640 - 0) + 0</i><br>
* <i>f(x) = log(x) / 2 * 640</i><br>
* <i>f(x) = log(x) * 320</i><br>
* </blockquote>
*
* Thus, saying
*
* <pre> .height(function(d) Math.log(d) * 138.974)</pre>
*
* is equivalent to
*
* <pre> .height(pv.Scale.log(1, 100).range(0, 640))</pre>
*
* Note that the scale is itself a function, and thus can be used as a property
* directly, assuming that the data associated with a mark is a number. While
* this is convenient for single-use scales, frequently it is desirable to
* define scales globally:
*
* <pre>var y = pv.Scale.log(1, 100).range(0, 640);</pre>
*
* The <tt>y</tt> scale can now be equivalently referenced within a property:
*
* <pre> .height(function(d) y(d))</pre>
*
* Alternatively, if the data are not simple numbers, the appropriate value can
* be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
* method similarly allows the data to be mapped to a numeric value before
* performing the log transformation.
*
* @param {number...} domain... optional domain values.
* @extends pv.Scale.quantitative
*/
pv.Scale.log = function() {
var scale = pv.Scale.quantitative(1, 10),
b, // logarithm base
p, // cached Math.log(b)
/** @ignore */ log = function(x) { return Math.log(x) / p; },
/** @ignore */ pow = function(y) { return Math.pow(b, y); };
/**
* Returns an array of evenly-spaced, suitably-rounded values in the input
* domain. These values are frequently used in conjunction with
* {@link pv.Rule} to display tick marks or grid lines.
*
* @function
* @name pv.Scale.log.prototype.ticks
* @returns {number[]} an array input domain values to use as ticks.
*/
scale.ticks = function() {
// TODO support non-uniform domains
var d = scale.domain(),
n = d[0] < 0,
i = Math.floor(n ? -log(-d[0]) : log(d[0])),
j = Math.ceil(n ? -log(-d[1]) : log(d[1])),
ticks = [];
if (n) {
ticks.push(-pow(-i));
for (; i++ < j;) for (var k = b - 1; k > 0; k--) ticks.push(-pow(-i) * k);
} else {
for (; i < j; i++) for (var k = 1; k < b; k++) ticks.push(pow(i) * k);
ticks.push(pow(i));
}
for (i = 0; ticks[i] < d[0]; i++); // strip small values
for (j = ticks.length; ticks[j - 1] > d[1]; j--); // strip big values
return ticks.slice(i, j);
};
/**
* Formats the specified tick value using the appropriate precision, assuming
* base 10.
*
* @function
* @name pv.Scale.log.prototype.tickFormat
* @param {number} t a tick value.
* @returns {string} a formatted tick value.
*/
scale.tickFormat = function(t) {
return t.toPrecision(1);
};
/**
* "Nices" this scale, extending the bounds of the input domain to
* evenly-rounded values. This method uses {@link pv.logFloor} and
* {@link pv.logCeil}. Nicing is useful if the domain is computed dynamically
* from data, and may be irregular. For example, given a domain of
* [0.20147987687960267, 0.996679553296417], a call to <tt>nice()</tt> might
* extend the domain to [0.1, 1].
*
* <p>This method must be invoked each time after setting the domain (and
* base).
*
* @function
* @name pv.Scale.log.prototype.nice
* @returns {pv.Scale.log} <tt>this</tt>.
*/
scale.nice = function() {
// TODO support non-uniform domains
var d = scale.domain();
return scale.domain(pv.logFloor(d[0], b), pv.logCeil(d[1], b));
};
/**
* Sets or gets the logarithm base. Defaults to 10.
*
* @function
* @name pv.Scale.log.prototype.base
* @param {number} [v] the new base.
* @returns {pv.Scale.log} <tt>this</tt>, or the current base.
*/
scale.base = function(v) {
if (arguments.length) {
b = Number(v);
p = Math.log(b);
scale.transform(log, pow); // update transformed domain
return this;
}
return b;
};
scale.domain.apply(scale, arguments);
return scale.base(10);
};
/**
* Returns a root scale for the specified domain. The arguments to this
* constructor are optional, and equivalent to calling {@link #domain}.
* The default domain and range are [0,1].
*
* @class Represents a root scale; a function that performs a power
* transformation. <style type="text/css">sub{line-height:0}</style> Most
* commonly, a root scale represents a 1-dimensional root transformation from a
* numeric domain of input data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to
* a numeric range of pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>].
*
* <p>Note that the scale is itself a function, and thus can be used as a
* property directly, assuming that the data associated with a mark is a
* number. While this is convenient for single-use scales, frequently it is
* desirable to define scales globally:
*
* <pre>var y = pv.Scale.root(0, 100).range(0, 640);</pre>
*
* The <tt>y</tt> scale can now be equivalently referenced within a property:
*
* <pre> .height(function(d) y(d))</pre>
*
* Alternatively, if the data are not simple numbers, the appropriate value can
* be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
* method similarly allows the data to be mapped to a numeric value before
* performing the root transformation.
*
* @param {number...} domain... optional domain values.
* @extends pv.Scale.quantitative
*/
pv.Scale.root = function() {
var scale = pv.Scale.quantitative();
/**
* Sets or gets the exponent; defaults to 2.
*
* @function
* @name pv.Scale.root.prototype.power
* @param {number} [v] the new exponent.
* @returns {pv.Scale.root} <tt>this</tt>, or the current base.
*/
scale.power = function(v) {
if (arguments.length) {
var b = Number(v), p = 1 / b;
scale.transform(
function(x) { return Math.pow(x, p); },
function(y) { return Math.pow(y, b); });
return this;
}
return b;
};
scale.domain.apply(scale, arguments);
return scale.power(2);
};
/**
* Returns an ordinal scale for the specified domain. The arguments to this
* constructor are optional, and equivalent to calling {@link #domain}.
*
* @class Represents an ordinal scale. <style
* type="text/css">sub{line-height:0}</style> An ordinal scale represents a
* pairwise mapping from <i>n</i> discrete values in the input domain to
* <i>n</i> discrete values in the output range. For example, an ordinal scale
* might map a domain of species ["setosa", "versicolor", "virginica"] to colors
* ["red", "green", "blue"]. Thus, saying
*
* <pre> .fillStyle(function(d) {
* switch (d.species) {
* case "setosa": return "red";
* case "versicolor": return "green";
* case "virginica": return "blue";
* }
* })</pre>
*
* is equivalent to
*
* <pre> .fillStyle(pv.Scale.ordinal("setosa", "versicolor", "virginica")
* .range("red", "green", "blue")
* .by(function(d) d.species))</pre>
*
* If the mapping from species to color does not need to be specified
* explicitly, the domain can be omitted. In this case it will be inferred
* lazily from the data:
*
* <pre> .fillStyle(pv.colors("red", "green", "blue")
* .by(function(d) d.species))</pre>
*
* When the domain is inferred, the first time the scale is invoked, the first
* element from the range will be returned. Subsequent calls with unique values
* will return subsequent elements from the range. If the inferred domain grows
* larger than the range, range values will be reused. However, it is strongly
* recommended that the domain and the range contain the same number of
* elements.
*
* <p>A range can be discretized from a continuous interval (e.g., for pixel
* positioning) by using {@link #split}, {@link #splitFlush} or
* {@link #splitBanded} after the domain has been set. For example, if
* <tt>states</tt> is an array of the fifty U.S. state names, the state name can
* be encoded in the left position:
*
* <pre> .left(pv.Scale.ordinal(states)
* .split(0, 640)
* .by(function(d) d.state))</pre>
*
* <p>N.B.: ordinal scales are not invertible (at least not yet), since the
* domain and range and discontinuous. A workaround is to use a linear scale.
*
* @param {...} domain... optional domain values.
* @extends pv.Scale
* @see pv.colors
*/
pv.Scale.ordinal = function() {
var d = [], i = {}, r = [], band = 0;
/** @private */
function scale(x) {
if (!(x in i)) i[x] = d.push(x) - 1;
return r[i[x] % r.length];
}
/**
* Sets or gets the input domain. This method can be invoked several ways:
*
* <p>1. <tt>domain(values...)</tt>
*
* <p>Specifying the domain as a series of values is the most explicit and
* recommended approach. However, if the domain values are derived from data,
* you may find the second method more appropriate.
*
* <p>2. <tt>domain(array, f)</tt>
*
* <p>Rather than enumerating the domain values as explicit arguments to this
* method, you can specify a single argument of an array. In addition, you can
* specify an optional accessor function to extract the domain values from the
* array.
*
* <p>3. <tt>domain()</tt>
*
* <p>Invoking the <tt>domain</tt> method with no arguments returns the
* current domain as an array.
*
* @function
* @name pv.Scale.ordinal.prototype.domain
* @param {...} domain... domain values.
* @returns {pv.Scale.ordinal} <tt>this</tt>, or the current domain.
*/
scale.domain = function(array, f) {
if (arguments.length) {
array = (array instanceof Array)
? ((arguments.length > 1) ? pv.map(array, f) : array)
: Array.prototype.slice.call(arguments);
/* Filter the specified ordinals to their unique values. */
d = [];
var seen = {};
for (var j = 0; j < array.length; j++) {
var o = array[j];
if (!(o in seen)) {
seen[o] = true;
d.push(o);
}
}
i = pv.numerate(d);
return this;
}
return d;
};
/**
* Sets or gets the output range. This method can be invoked several ways:
*
* <p>1. <tt>range(values...)</tt>
*
* <p>Specifying the range as a series of values is the most explicit and
* recommended approach. However, if the range values are derived from data,
* you may find the second method more appropriate.
*
* <p>2. <tt>range(array, f)</tt>
*
* <p>Rather than enumerating the range values as explicit arguments to this
* method, you can specify a single argument of an array. In addition, you can
* specify an optional accessor function to extract the range values from the
* array.
*
* <p>3. <tt>range()</tt>
*
* <p>Invoking the <tt>range</tt> method with no arguments returns the
* current range as an array.
*
* @function
* @name pv.Scale.ordinal.prototype.range
* @param {...} range... range values.
* @returns {pv.Scale.ordinal} <tt>this</tt>, or the current range.
*/
scale.range = function(array, f) {
if (arguments.length) {
r = (array instanceof Array)
? ((arguments.length > 1) ? pv.map(array, f) : array)
: Array.prototype.slice.call(arguments);
if (typeof r[0] == "string") r = r.map(pv.color);
return this;
}
return r;
};
/**
* Sets the range from the given continuous interval. The interval
* [<i>min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced points,
* where <i>n</i> is the number of (unique) values in the domain. The first
* and last point are offset from the edge of the range by half the distance
* between points.
*
* <p>This method must be called <i>after</i> the domain is set.
*
* @function
* @name pv.Scale.ordinal.prototype.split
* @param {number} min minimum value of the output range.
* @param {number} max maximum value of the output range.
* @returns {pv.Scale.ordinal} <tt>this</tt>.
* @see #splitFlush
* @see #splitBanded
*/
scale.split = function(min, max) {
var step = (max - min) / this.domain().length;
r = pv.range(min + step / 2, max, step);
return this;
};
/**
* Sets the range from the given continuous interval. The interval
* [<i>min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced points,
* where <i>n</i> is the number of (unique) values in the domain. The first
* and last point are exactly on the edge of the range.
*
* <p>This method must be called <i>after</i> the domain is set.
*
* @function
* @name pv.Scale.ordinal.prototype.splitFlush
* @param {number} min minimum value of the output range.
* @param {number} max maximum value of the output range.
* @returns {pv.Scale.ordinal} <tt>this</tt>.
* @see #split
*/
scale.splitFlush = function(min, max) {
var n = this.domain().length, step = (max - min) / (n - 1);
r = (n == 1) ? [(min + max) / 2]
: pv.range(min, max + step / 2, step);
return this;
};
/**
* Sets the range from the given continuous interval. The interval
* [<i>min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced bands,
* where <i>n</i> is the number of (unique) values in the domain. The first
* and last band are offset from the edge of the range by the distance between
* bands.
*
* <p>The band width argument, <tt>band</tt>, is typically in the range [0, 1]
* and defaults to 1. This fraction corresponds to the amount of space in the
* range to allocate to the bands, as opposed to padding. A value of 0.5 means
* that the band width will be equal to the padding width. The computed
* absolute band width can be retrieved from the range as
* <tt>scale.range().band</tt>.
*
* <p>If the band width argument is negative, this method will allocate bands
* of a <i>fixed</i> width <tt>-band</tt>, rather than a relative fraction of
* the available space.
*
* <p>Tip: to inset the bands by a fixed amount <tt>p</tt>, specify a minimum
* value of <tt>min + p</tt> (or simply <tt>p</tt>, if <tt>min</tt> is
* 0). Then set the mark width to <tt>scale.range().band - p</tt>.
*
* <p>This method must be called <i>after</i> the domain is set.
*
* @function
* @name pv.Scale.ordinal.prototype.splitBanded
* @param {number} min minimum value of the output range.
* @param {number} max maximum value of the output range.
* @param {number} [band] the fractional band width in [0, 1]; defaults to 1.
* @returns {pv.Scale.ordinal} <tt>this</tt>.
* @see #split
*/
scale.splitBanded = function(min, max, band) {
if (arguments.length < 3) band = 1;
if (band < 0) {
var n = this.domain().length,
total = -band * n,
remaining = max - min - total,
padding = remaining / (n + 1);
r = pv.range(min + padding, max, padding - band);
r.band = -band;
} else {
var step = (max - min) / (this.domain().length + (1 - band));
r = pv.range(min + step * (1 - band), max, step);
r.band = step * band;
}
return this;
};
/**
* Returns a view of this scale by the specified accessor function <tt>f</tt>.
* Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
* <tt>function(d) y(d.foo)</tt>. This method should be used judiciously; it
* is typically more clear to invoke the scale directly, passing in the value
* to be scaled.
*
* @function
* @name pv.Scale.ordinal.prototype.by
* @param {function} f an accessor function.
* @returns {pv.Scale.ordinal} a view of this scale by the specified accessor
* function.
*/
scale.by = function(f) {
function by() { return scale(f.apply(this, arguments)); }
for (var method in scale) by[method] = scale[method];
return by;
};
scale.domain.apply(scale, arguments);
return scale;
};
/**
* Constructs a default quantile scale. The arguments to this constructor are
* optional, and equivalent to calling {@link #domain}. The default domain is
* the empty set, and the default range is [0,1].
*
* @class Represents a quantile scale; a function that maps from a value within
* a sortable domain to a quantized numeric range. Typically, the domain is a
* set of numbers, but any sortable value (such as strings) can be used as the
* domain of a quantile scale. The range defaults to [0,1], with 0 corresponding
* to the smallest value in the domain, 1 the largest, .5 the median, etc.
*
* <p>By default, the number of quantiles in the range corresponds to the number
* of values in the domain. The {@link #quantiles} method can be used to specify
* an explicit number of quantiles; for example, <tt>quantiles(4)</tt> produces
* a standard quartile scale. A quartile scale's range is a set of four discrete
* values, such as [0, 1/3, 2/3, 1]. Calling the {@link #range} method will
* scale these discrete values accordingly, similar to {@link
* pv.Scale.ordinal#splitFlush}.
*
* <p>For example, given the strings ["c", "a", "b"], a default quantile scale:
*
* <pre>pv.Scale.quantile("c", "a", "b")</pre>
*
* will return 0 for "a", .5 for "b", and 1 for "c".
*
* @extends pv.Scale
*/
pv.Scale.quantile = function() {
var n = -1, // number of quantiles
j = -1, // max quantile index
q = [], // quantile boundaries
d = [], // domain
y = pv.Scale.linear(); // range
/** @private */
function scale(x) {
return y(Math.max(0, Math.min(j, pv.search.index(q, x) - 1)) / j);
}
/**
* Sets or gets the quantile boundaries. By default, each element in the
* domain is in its own quantile. If the argument to this method is a number,
* it specifies the number of equal-sized quantiles by which to divide the
* domain.
*
* <p>If no arguments are specified, this method returns the quantile
* boundaries; the first element is always the minimum value of the domain,
* and the last element is the maximum value of the domain. Thus, the length
* of the returned array is always one greater than the number of quantiles.
*
* @function
* @name pv.Scale.quantile.prototype.quantiles
* @param {number} x the number of quantiles.
*/
scale.quantiles = function(x) {
if (arguments.length) {
n = Number(x);
if (n < 0) {
q = [d[0]].concat(d);
j = d.length - 1;
} else {
q = [];
q[0] = d[0];
for (var i = 1; i <= n; i++) {
q[i] = d[~~(i * (d.length - 1) / n)];
}
j = n - 1;
}
return this;
}
return q;
};
/**
* Sets or gets the input domain. This method can be invoked several ways:
*
* <p>1. <tt>domain(values...)</tt>
*
* <p>Specifying the domain as a series of values is the most explicit and
* recommended approach. However, if the domain values are derived from data,
* you may find the second method more appropriate.
*
* <p>2. <tt>domain(array, f)</tt>
*
* <p>Rather than enumerating the domain values as explicit arguments to this
* method, you can specify a single argument of an array. In addition, you can
* specify an optional accessor function to extract the domain values from the
* array.
*
* <p>3. <tt>domain()</tt>
*
* <p>Invoking the <tt>domain</tt> method with no arguments returns the
* current domain as an array.
*
* @function
* @name pv.Scale.quantile.prototype.domain
* @param {...} domain... domain values.
* @returns {pv.Scale.quantile} <tt>this</tt>, or the current domain.
*/
scale.domain = function(array, f) {
if (arguments.length) {
d = (array instanceof Array)
? pv.map(array, f)
: Array.prototype.slice.call(arguments);
d.sort(pv.naturalOrder);
scale.quantiles(n); // recompute quantiles
return this;
}
return d;
};
/**
* Sets or gets the output range. This method can be invoked several ways:
*
* <p>1. <tt>range(min, ..., max)</tt>
*
* <p>The range may be specified as a series of numbers or colors. Most
* commonly, two numbers are specified: the minimum and maximum pixel values.
* For a color scale, values may be specified as {@link pv.Color}s or
* equivalent strings. For a diverging scale, or other subdivided non-uniform
* scales, multiple values can be specified. For example:
*
* <pre> .range("red", "white", "green")</pre>
*
* <p>Currently, only numbers and colors are supported as range values. The
* number of range values must exactly match the number of domain values, or
* the behavior of the scale is undefined.
*
* <p>2. <tt>range()</tt>
*
* <p>Invoking the <tt>range</tt> method with no arguments returns the current
* range as an array of numbers or colors.
*
* @function
* @name pv.Scale.quantile.prototype.range
* @param {...} range... range values.
* @returns {pv.Scale.quantile} <tt>this</tt>, or the current range.
*/
scale.range = function() {
if (arguments.length) {
y.range.apply(y, arguments);
return this;
}
return y.range();
};
/**
* Returns a view of this scale by the specified accessor function <tt>f</tt>.
* Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
* <tt>function(d) y(d.foo)</tt>.
*
* <p>This method is provided for convenience, such that scales can be
* succinctly defined inline. For example, given an array of data elements
* that have a <tt>score</tt> attribute with the domain [0, 1], the height
* property could be specified as:
*
* <pre>.height(pv.Scale.linear().range(0, 480).by(function(d) d.score))</pre>
*
* This is equivalent to:
*
* <pre>.height(function(d) d.score * 480)</pre>
*
* This method should be used judiciously; it is typically more clear to
* invoke the scale directly, passing in the value to be scaled.
*
* @function
* @name pv.Scale.quantile.prototype.by
* @param {function} f an accessor function.
* @returns {pv.Scale.quantile} a view of this scale by the specified
* accessor function.
*/
scale.by = function(f) {
function by() { return scale(f.apply(this, arguments)); }
for (var method in scale) by[method] = scale[method];
return by;
};
scale.domain.apply(scale, arguments);
return scale;
};
/**
* Returns a histogram operator for the specified data, with an optional
* accessor function. If the data specified is not an array of numbers, an
* accessor function must be specified to map the data to numeric values.
*
* @class Represents a histogram operator.
*
* @param {array} data an array of numbers or objects.
* @param {function} [f] an optional accessor function.
*/
pv.histogram = function(data, f) {
var frequency = true;
return {
/**
* Returns the computed histogram bins. An optional array of numbers,
* <tt>ticks</tt>, may be specified as the break points. If the ticks are
* not specified, default ticks will be computed using a linear scale on the
* data domain.
*
* <p>The returned array contains {@link pv.histogram.Bin}s. The <tt>x</tt>
* attribute corresponds to the bin's start value (inclusive), while the
* <tt>dx</tt> attribute stores the bin size (end - start). The <tt>y</tt>
* attribute stores either the frequency count or probability, depending on
* how the histogram operator has been configured.
*
* <p>The {@link pv.histogram.Bin} objects are themselves arrays, containing
* the data elements present in each bin, i.e., the elements in the
* <tt>data</tt> array (prior to invoking the accessor function, if any).
* For example, if the data represented countries, and the accessor function
* returned the GDP of each country, the returned bins would be arrays of
* countries (not GDPs).
*
* @function
* @name pv.histogram.prototype.bins
* @param {array} [ticks]
* @returns {array}
*/ /** @private */
bins: function(ticks) {
var x = pv.map(data, f), bins = [];
/* Initialize default ticks. */
if (!arguments.length) ticks = pv.Scale.linear(x).ticks();
/* Initialize the bins. */
for (var i = 0; i < ticks.length - 1; i++) {
var bin = bins[i] = [];
bin.x = ticks[i];
bin.dx = ticks[i + 1] - ticks[i];
bin.y = 0;
}
/* Count the number of samples per bin. */
for (var i = 0; i < x.length; i++) {
var j = pv.search.index(ticks, x[i]) - 1,
bin = bins[Math.max(0, Math.min(bins.length - 1, j))];
bin.y++;
bin.push(data[i]);
}
/* Convert frequencies to probabilities. */
if (!frequency) for (var i = 0; i < bins.length; i++) {
bins[i].y /= x.length;
}
return bins;
},
/**
* Sets or gets whether this histogram operator returns frequencies or
* probabilities.
*
* @function
* @name pv.histogram.prototype.frequency
* @param {boolean} [x]
* @returns {pv.histogram} this.
*/ /** @private */
frequency: function(x) {
if (arguments.length) {
frequency = Boolean(x);
return this;
}
return frequency;
}
};
};
/**
* @class Represents a bin returned by the {@link pv.histogram} operator. Bins
* are themselves arrays containing the data elements present in the given bin
* (prior to the accessor function being invoked to convert the data object to a
* numeric value). These bin arrays have additional attributes with meta
* information about the bin.
*
* @name pv.histogram.Bin
* @extends array
* @see pv.histogram
*/
/**
* The start value of the bin's range.
*
* @type number
* @name pv.histogram.Bin.prototype.x
*/
/**
* The magnitude value of the bin's range; end - start.
*
* @type number
* @name pv.histogram.Bin.prototype.dx
*/
/**
* The frequency or probability of the bin, depending on how the histogram
* operator was configured.
*
* @type number
* @name pv.histogram.Bin.prototype.y
*/
/**
* Returns the {@link pv.Color} for the specified color format string. Colors
* may have an associated opacity, or alpha channel. Color formats are specified
* by CSS Color Modular Level 3, using either in RGB or HSL color space. For
* example:<ul>
*
* <li>#f00 // #rgb
* <li>#ff0000 // #rrggbb
* <li>rgb(255, 0, 0)
* <li>rgb(100%, 0%, 0%)
* <li>hsl(0, 100%, 50%)
* <li>rgba(0, 0, 255, 0.5)
* <li>hsla(120, 100%, 50%, 1)
*
* </ul>The SVG 1.0 color keywords names are also supported, such as "aliceblue"
* and "yellowgreen". The "transparent" keyword is supported for fully-
* transparent black.
*
* <p>If the <tt>format</tt> argument is already an instance of <tt>Color</tt>,
* the argument is returned with no further processing.
*
* @param {string} format the color specification string, such as "#f00".
* @returns {pv.Color} the corresponding <tt>Color</tt>.
* @see <a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">SVG color
* keywords</a>
* @see <a href="http://www.w3.org/TR/css3-color/">CSS3 color module</a>
*/
pv.color = function(format) {
if (format.rgb) return format.rgb();
/* Handle hsl, rgb. */
var m1 = /([a-z]+)\((.*)\)/i.exec(format);
if (m1) {
var m2 = m1[2].split(","), a = 1;
switch (m1[1]) {
case "hsla":
case "rgba": {
a = parseFloat(m2[3]);
if (!a) return pv.Color.transparent;
break;
}
}
switch (m1[1]) {
case "hsla":
case "hsl": {
var h = parseFloat(m2[0]), // degrees
s = parseFloat(m2[1]) / 100, // percentage
l = parseFloat(m2[2]) / 100; // percentage
return (new pv.Color.Hsl(h, s, l, a)).rgb();
}
case "rgba":
case "rgb": {
function parse(c) { // either integer or percentage
var f = parseFloat(c);
return (c[c.length - 1] == '%') ? Math.round(f * 2.55) : f;
}
var r = parse(m2[0]), g = parse(m2[1]), b = parse(m2[2]);
return pv.rgb(r, g, b, a);
}
}
}
/* Named colors. */
var named = pv.Color.names[format];
if (named) return named;
/* Hexadecimal colors: #rgb and #rrggbb. */
if (format.charAt(0) == "#") {
var r, g, b;
if (format.length == 4) {
r = format.charAt(1); r += r;
g = format.charAt(2); g += g;
b = format.charAt(3); b += b;
} else if (format.length == 7) {
r = format.substring(1, 3);
g = format.substring(3, 5);
b = format.substring(5, 7);
}
return pv.rgb(parseInt(r, 16), parseInt(g, 16), parseInt(b, 16), 1);
}
/* Otherwise, pass-through unsupported colors. */
return new pv.Color(format, 1);
};
/**
* Constructs a color with the specified color format string and opacity. This
* constructor should not be invoked directly; use {@link pv.color} instead.
*
* @class Represents an abstract (possibly translucent) color. The color is
* divided into two parts: the <tt>color</tt> attribute, an opaque color format
* string, and the <tt>opacity</tt> attribute, a float in [0, 1]. The color
* space is dependent on the implementing class; all colors support the
* {@link #rgb} method to convert to RGB color space for interpolation.
*
* <p>See also the <a href="../../api/Color.html">Color guide</a>.
*
* @param {string} color an opaque color format string, such as "#f00".
* @param {number} opacity the opacity, in [0,1].
* @see pv.color
*/
pv.Color = function(color, opacity) {
/**
* An opaque color format string, such as "#f00".
*
* @type string
* @see <a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">SVG color
* keywords</a>
* @see <a href="http://www.w3.org/TR/css3-color/">CSS3 color module</a>
*/
this.color = color;
/**
* The opacity, a float in [0, 1].
*
* @type number
*/
this.opacity = opacity;
};
/**
* Returns a new color that is a brighter version of this color. The behavior of
* this method may vary slightly depending on the underlying color space.
* Although brighter and darker are inverse operations, the results of a series
* of invocations of these two methods might be inconsistent because of rounding
* errors.
*
* @param [k] {number} an optional scale factor; defaults to 1.
* @see #darker
* @returns {pv.Color} a brighter color.
*/
pv.Color.prototype.brighter = function(k) {
return this.rgb().brighter(k);
};
/**
* Returns a new color that is a brighter version of this color. The behavior of
* this method may vary slightly depending on the underlying color space.
* Although brighter and darker are inverse operations, the results of a series
* of invocations of these two methods might be inconsistent because of rounding
* errors.
*
* @param [k] {number} an optional scale factor; defaults to 1.
* @see #brighter
* @returns {pv.Color} a darker color.
*/
pv.Color.prototype.darker = function(k) {
return this.rgb().darker(k);
};
/**
* Constructs a new RGB color with the specified channel values.
*
* @param {number} r the red channel, an integer in [0,255].
* @param {number} g the green channel, an integer in [0,255].
* @param {number} b the blue channel, an integer in [0,255].
* @param {number} [a] the alpha channel, a float in [0,1].
* @returns pv.Color.Rgb
*/
pv.rgb = function(r, g, b, a) {
return new pv.Color.Rgb(r, g, b, (arguments.length == 4) ? a : 1);
};
/**
* Constructs a new RGB color with the specified channel values.
*
* @class Represents a color in RGB space.
*
* @param {number} r the red channel, an integer in [0,255].
* @param {number} g the green channel, an integer in [0,255].
* @param {number} b the blue channel, an integer in [0,255].
* @param {number} a the alpha channel, a float in [0,1].
* @extends pv.Color
*/
pv.Color.Rgb = function(r, g, b, a) {
pv.Color.call(this, a ? ("rgb(" + r + "," + g + "," + b + ")") : "none", a);
/**
* The red channel, an integer in [0, 255].
*
* @type number
*/
this.r = r;
/**
* The green channel, an integer in [0, 255].
*
* @type number
*/
this.g = g;
/**
* The blue channel, an integer in [0, 255].
*
* @type number
*/
this.b = b;
/**
* The alpha channel, a float in [0, 1].
*
* @type number
*/
this.a = a;
};
pv.Color.Rgb.prototype = pv.extend(pv.Color);
/**
* Constructs a new RGB color with the same green, blue and alpha channels as
* this color, with the specified red channel.
*
* @param {number} r the red channel, an integer in [0,255].
*/
pv.Color.Rgb.prototype.red = function(r) {
return pv.rgb(r, this.g, this.b, this.a);
};
/**
* Constructs a new RGB color with the same red, blue and alpha channels as this
* color, with the specified green channel.
*
* @param {number} g the green channel, an integer in [0,255].
*/
pv.Color.Rgb.prototype.green = function(g) {
return pv.rgb(this.r, g, this.b, this.a);
};
/**
* Constructs a new RGB color with the same red, green and alpha channels as
* this color, with the specified blue channel.
*
* @param {number} b the blue channel, an integer in [0,255].
*/
pv.Color.Rgb.prototype.blue = function(b) {
return pv.rgb(this.r, this.g, b, this.a);
};
/**
* Constructs a new RGB color with the same red, green and blue channels as this
* color, with the specified alpha channel.
*
* @param {number} a the alpha channel, a float in [0,1].
*/
pv.Color.Rgb.prototype.alpha = function(a) {
return pv.rgb(this.r, this.g, this.b, a);
};
/**
* Returns the RGB color equivalent to this color. This method is abstract and
* must be implemented by subclasses.
*
* @returns {pv.Color.Rgb} an RGB color.
* @function
* @name pv.Color.prototype.rgb
*/
/**
* Returns this.
*
* @returns {pv.Color.Rgb} this.
*/
pv.Color.Rgb.prototype.rgb = function() { return this; };
/**
* Returns a new color that is a brighter version of this color. This method
* applies an arbitrary scale factor to each of the three RGB components of this
* color to create a brighter version of this color. Although brighter and
* darker are inverse operations, the results of a series of invocations of
* these two methods might be inconsistent because of rounding errors.
*
* @param [k] {number} an optional scale factor; defaults to 1.
* @see #darker
* @returns {pv.Color.Rgb} a brighter color.
*/
pv.Color.Rgb.prototype.brighter = function(k) {
k = Math.pow(0.7, arguments.length ? k : 1);
var r = this.r, g = this.g, b = this.b, i = 30;
if (!r && !g && !b) return pv.rgb(i, i, i, this.a);
if (r && (r < i)) r = i;
if (g && (g < i)) g = i;
if (b && (b < i)) b = i;
return pv.rgb(
Math.min(255, Math.floor(r / k)),
Math.min(255, Math.floor(g / k)),
Math.min(255, Math.floor(b / k)),
this.a);
};
/**
* Returns a new color that is a darker version of this color. This method
* applies an arbitrary scale factor to each of the three RGB components of this
* color to create a darker version of this color. Although brighter and darker
* are inverse operations, the results of a series of invocations of these two
* methods might be inconsistent because of rounding errors.
*
* @param [k] {number} an optional scale factor; defaults to 1.
* @see #brighter
* @returns {pv.Color.Rgb} a darker color.
*/
pv.Color.Rgb.prototype.darker = function(k) {
k = Math.pow(0.7, arguments.length ? k : 1);
return pv.rgb(
Math.max(0, Math.floor(k * this.r)),
Math.max(0, Math.floor(k * this.g)),
Math.max(0, Math.floor(k * this.b)),
this.a);
};
/**
* Constructs a new HSL color with the specified values.
*
* @param {number} h the hue, an integer in [0, 360].
* @param {number} s the saturation, a float in [0, 1].
* @param {number} l the lightness, a float in [0, 1].
* @param {number} [a] the opacity, a float in [0, 1].
* @returns pv.Color.Hsl
*/
pv.hsl = function(h, s, l, a) {
return new pv.Color.Hsl(h, s, l, (arguments.length == 4) ? a : 1);
};
/**
* Constructs a new HSL color with the specified values.
*
* @class Represents a color in HSL space.
*
* @param {number} h the hue, an integer in [0, 360].
* @param {number} s the saturation, a float in [0, 1].
* @param {number} l the lightness, a float in [0, 1].
* @param {number} a the opacity, a float in [0, 1].
* @extends pv.Color
*/
pv.Color.Hsl = function(h, s, l, a) {
pv.Color.call(this, "hsl(" + h + "," + (s * 100) + "%," + (l * 100) + "%)", a);
/**
* The hue, an integer in [0, 360].
*
* @type number
*/
this.h = h;
/**
* The saturation, a float in [0, 1].
*
* @type number
*/
this.s = s;
/**
* The lightness, a float in [0, 1].
*
* @type number
*/
this.l = l;
/**
* The opacity, a float in [0, 1].
*
* @type number
*/
this.a = a;
};
pv.Color.Hsl.prototype = pv.extend(pv.Color);
/**
* Constructs a new HSL color with the same saturation, lightness and alpha as
* this color, and the specified hue.
*
* @param {number} h the hue, an integer in [0, 360].
*/
pv.Color.Hsl.prototype.hue = function(h) {
return pv.hsl(h, this.s, this.l, this.a);
};
/**
* Constructs a new HSL color with the same hue, lightness and alpha as this
* color, and the specified saturation.
*
* @param {number} s the saturation, a float in [0, 1].
*/
pv.Color.Hsl.prototype.saturation = function(s) {
return pv.hsl(this.h, s, this.l, this.a);
};
/**
* Constructs a new HSL color with the same hue, saturation and alpha as this
* color, and the specified lightness.
*
* @param {number} l the lightness, a float in [0, 1].
*/
pv.Color.Hsl.prototype.lightness = function(l) {
return pv.hsl(this.h, this.s, l, this.a);
};
/**
* Constructs a new HSL color with the same hue, saturation and lightness as
* this color, and the specified alpha.
*
* @param {number} a the opacity, a float in [0, 1].
*/
pv.Color.Hsl.prototype.alpha = function(a) {
return pv.hsl(this.h, this.s, this.l, a);
};
/**
* Returns the RGB color equivalent to this HSL color.
*
* @returns {pv.Color.Rgb} an RGB color.
*/
pv.Color.Hsl.prototype.rgb = function() {
var h = this.h, s = this.s, l = this.l;
/* Some simple corrections for h, s and l. */
h = h % 360; if (h < 0) h += 360;
s = Math.max(0, Math.min(s, 1));
l = Math.max(0, Math.min(l, 1));
/* From FvD 13.37, CSS Color Module Level 3 */
var m2 = (l <= .5) ? (l * (1 + s)) : (l + s - l * s);
var m1 = 2 * l - m2;
function v(h) {
if (h > 360) h -= 360;
else if (h < 0) h += 360;
if (h < 60) return m1 + (m2 - m1) * h / 60;
if (h < 180) return m2;
if (h < 240) return m1 + (m2 - m1) * (240 - h) / 60;
return m1;
}
function vv(h) {
return Math.round(v(h) * 255);
}
return pv.rgb(vv(h + 120), vv(h), vv(h - 120), this.a);
};
/**
* @private SVG color keywords, per CSS Color Module Level 3.
*
* @see <a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">SVG color
* keywords</a>
*/
pv.Color.names = {
aliceblue: "#f0f8ff",
antiquewhite: "#faebd7",
aqua: "#00ffff",
aquamarine: "#7fffd4",
azure: "#f0ffff",
beige: "#f5f5dc",
bisque: "#ffe4c4",
black: "#000000",
blanchedalmond: "#ffebcd",
blue: "#0000ff",
blueviolet: "#8a2be2",
brown: "#a52a2a",
burlywood: "#deb887",
cadetblue: "#5f9ea0",
chartreuse: "#7fff00",
chocolate: "#d2691e",
coral: "#ff7f50",
cornflowerblue: "#6495ed",
cornsilk: "#fff8dc",
crimson: "#dc143c",
cyan: "#00ffff",
darkblue: "#00008b",
darkcyan: "#008b8b",
darkgoldenrod: "#b8860b",
darkgray: "#a9a9a9",
darkgreen: "#006400",
darkgrey: "#a9a9a9",
darkkhaki: "#bdb76b",
darkmagenta: "#8b008b",
darkolivegreen: "#556b2f",
darkorange: "#ff8c00",
darkorchid: "#9932cc",
darkred: "#8b0000",
darksalmon: "#e9967a",
darkseagreen: "#8fbc8f",
darkslateblue: "#483d8b",
darkslategray: "#2f4f4f",
darkslategrey: "#2f4f4f",
darkturquoise: "#00ced1",
darkviolet: "#9400d3",
deeppink: "#ff1493",
deepskyblue: "#00bfff",
dimgray: "#696969",
dimgrey: "#696969",
dodgerblue: "#1e90ff",
firebrick: "#b22222",
floralwhite: "#fffaf0",
forestgreen: "#228b22",
fuchsia: "#ff00ff",
gainsboro: "#dcdcdc",
ghostwhite: "#f8f8ff",
gold: "#ffd700",
goldenrod: "#daa520",
gray: "#808080",
green: "#008000",
greenyellow: "#adff2f",
grey: "#808080",
honeydew: "#f0fff0",
hotpink: "#ff69b4",
indianred: "#cd5c5c",
indigo: "#4b0082",
ivory: "#fffff0",
khaki: "#f0e68c",
lavender: "#e6e6fa",
lavenderblush: "#fff0f5",
lawngreen: "#7cfc00",
lemonchiffon: "#fffacd",
lightblue: "#add8e6",
lightcoral: "#f08080",
lightcyan: "#e0ffff",
lightgoldenrodyellow: "#fafad2",
lightgray: "#d3d3d3",
lightgreen: "#90ee90",
lightgrey: "#d3d3d3",
lightpink: "#ffb6c1",
lightsalmon: "#ffa07a",
lightseagreen: "#20b2aa",
lightskyblue: "#87cefa",
lightslategray: "#778899",
lightslategrey: "#778899",
lightsteelblue: "#b0c4de",
lightyellow: "#ffffe0",
lime: "#00ff00",
limegreen: "#32cd32",
linen: "#faf0e6",
magenta: "#ff00ff",
maroon: "#800000",
mediumaquamarine: "#66cdaa",
mediumblue: "#0000cd",
mediumorchid: "#ba55d3",
mediumpurple: "#9370db",
mediumseagreen: "#3cb371",
mediumslateblue: "#7b68ee",
mediumspringgreen: "#00fa9a",
mediumturquoise: "#48d1cc",
mediumvioletred: "#c71585",
midnightblue: "#191970",
mintcream: "#f5fffa",
mistyrose: "#ffe4e1",
moccasin: "#ffe4b5",
navajowhite: "#ffdead",
navy: "#000080",
oldlace: "#fdf5e6",
olive: "#808000",
olivedrab: "#6b8e23",
orange: "#ffa500",
orangered: "#ff4500",
orchid: "#da70d6",
palegoldenrod: "#eee8aa",
palegreen: "#98fb98",
paleturquoise: "#afeeee",
palevioletred: "#db7093",
papayawhip: "#ffefd5",
peachpuff: "#ffdab9",
peru: "#cd853f",
pink: "#ffc0cb",
plum: "#dda0dd",
powderblue: "#b0e0e6",
purple: "#800080",
red: "#ff0000",
rosybrown: "#bc8f8f",
royalblue: "#4169e1",
saddlebrown: "#8b4513",
salmon: "#fa8072",
sandybrown: "#f4a460",
seagreen: "#2e8b57",
seashell: "#fff5ee",
sienna: "#a0522d",
silver: "#c0c0c0",
skyblue: "#87ceeb",
slateblue: "#6a5acd",
slategray: "#708090",
slategrey: "#708090",
snow: "#fffafa",
springgreen: "#00ff7f",
steelblue: "#4682b4",
tan: "#d2b48c",
teal: "#008080",
thistle: "#d8bfd8",
tomato: "#ff6347",
turquoise: "#40e0d0",
violet: "#ee82ee",
wheat: "#f5deb3",
white: "#ffffff",
whitesmoke: "#f5f5f5",
yellow: "#ffff00",
yellowgreen: "#9acd32",
transparent: pv.Color.transparent = pv.rgb(0, 0, 0, 0)
};
/* Initialized named colors. */
(function() {
var names = pv.Color.names;
for (var name in names) names[name] = pv.color(names[name]);
})();
/**
* Returns a new categorical color encoding using the specified colors. The
* arguments to this method are an array of colors; see {@link pv.color}. For
* example, to create a categorical color encoding using the <tt>species</tt>
* attribute:
*
* <pre>pv.colors("red", "green", "blue").by(function(d) d.species)</pre>
*
* The result of this expression can be used as a fill- or stroke-style
* property. This assumes that the data's <tt>species</tt> attribute is a
* string.
*
* @param {string} colors... categorical colors.
* @see pv.Scale.ordinal
* @returns {pv.Scale.ordinal} an ordinal color scale.
*/
pv.colors = function() {
var scale = pv.Scale.ordinal();
scale.range.apply(scale, arguments);
return scale;
};
/**
* A collection of standard color palettes for categorical encoding.
*
* @namespace A collection of standard color palettes for categorical encoding.
*/
pv.Colors = {};
/**
* Returns a new 10-color scheme. The arguments to this constructor are
* optional, and equivalent to calling {@link pv.Scale.OrdinalScale#domain}. The
* following colors are used:
*
* <div style="background:#1f77b4;">#1f77b4</div>
* <div style="background:#ff7f0e;">#ff7f0e</div>
* <div style="background:#2ca02c;">#2ca02c</div>
* <div style="background:#d62728;">#d62728</div>
* <div style="background:#9467bd;">#9467bd</div>
* <div style="background:#8c564b;">#8c564b</div>
* <div style="background:#e377c2;">#e377c2</div>
* <div style="background:#7f7f7f;">#7f7f7f</div>
* <div style="background:#bcbd22;">#bcbd22</div>
* <div style="background:#17becf;">#17becf</div>
*
* @param {number...} domain... domain values.
* @returns {pv.Scale.ordinal} a new ordinal color scale.
* @see pv.color
*/
pv.Colors.category10 = function() {
var scale = pv.colors(
"#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf");
scale.domain.apply(scale, arguments);
return scale;
};
/**
* Returns a new 20-color scheme. The arguments to this constructor are
* optional, and equivalent to calling {@link pv.Scale.OrdinalScale#domain}. The
* following colors are used:
*
* <div style="background:#1f77b4;">#1f77b4</div>
* <div style="background:#aec7e8;">#aec7e8</div>
* <div style="background:#ff7f0e;">#ff7f0e</div>
* <div style="background:#ffbb78;">#ffbb78</div>
* <div style="background:#2ca02c;">#2ca02c</div>
* <div style="background:#98df8a;">#98df8a</div>
* <div style="background:#d62728;">#d62728</div>
* <div style="background:#ff9896;">#ff9896</div>
* <div style="background:#9467bd;">#9467bd</div>
* <div style="background:#c5b0d5;">#c5b0d5</div>
* <div style="background:#8c564b;">#8c564b</div>
* <div style="background:#c49c94;">#c49c94</div>
* <div style="background:#e377c2;">#e377c2</div>
* <div style="background:#f7b6d2;">#f7b6d2</div>
* <div style="background:#7f7f7f;">#7f7f7f</div>
* <div style="background:#c7c7c7;">#c7c7c7</div>
* <div style="background:#bcbd22;">#bcbd22</div>
* <div style="background:#dbdb8d;">#dbdb8d</div>
* <div style="background:#17becf;">#17becf</div>
* <div style="background:#9edae5;">#9edae5</div>
*
* @param {number...} domain... domain values.
* @returns {pv.Scale.ordinal} a new ordinal color scale.
* @see pv.color
*/
pv.Colors.category20 = function() {
var scale = pv.colors(
"#1f77b4", "#aec7e8", "#ff7f0e", "#ffbb78", "#2ca02c",
"#98df8a", "#d62728", "#ff9896", "#9467bd", "#c5b0d5",
"#8c564b", "#c49c94", "#e377c2", "#f7b6d2", "#7f7f7f",
"#c7c7c7", "#bcbd22", "#dbdb8d", "#17becf", "#9edae5");
scale.domain.apply(scale, arguments);
return scale;
};
/**
* Returns a new alternative 19-color scheme. The arguments to this constructor
* are optional, and equivalent to calling
* {@link pv.Scale.OrdinalScale#domain}. The following colors are used:
*
* <div style="background:#9c9ede;">#9c9ede</div>
* <div style="background:#7375b5;">#7375b5</div>
* <div style="background:#4a5584;">#4a5584</div>
* <div style="background:#cedb9c;">#cedb9c</div>
* <div style="background:#b5cf6b;">#b5cf6b</div>
* <div style="background:#8ca252;">#8ca252</div>
* <div style="background:#637939;">#637939</div>
* <div style="background:#e7cb94;">#e7cb94</div>
* <div style="background:#e7ba52;">#e7ba52</div>
* <div style="background:#bd9e39;">#bd9e39</div>
* <div style="background:#8c6d31;">#8c6d31</div>
* <div style="background:#e7969c;">#e7969c</div>
* <div style="background:#d6616b;">#d6616b</div>
* <div style="background:#ad494a;">#ad494a</div>
* <div style="background:#843c39;">#843c39</div>
* <div style="background:#de9ed6;">#de9ed6</div>
* <div style="background:#ce6dbd;">#ce6dbd</div>
* <div style="background:#a55194;">#a55194</div>
* <div style="background:#7b4173;">#7b4173</div>
*
* @param {number...} domain... domain values.
* @returns {pv.Scale.ordinal} a new ordinal color scale.
* @see pv.color
*/
pv.Colors.category19 = function() {
var scale = pv.colors(
"#9c9ede", "#7375b5", "#4a5584", "#cedb9c", "#b5cf6b",
"#8ca252", "#637939", "#e7cb94", "#e7ba52", "#bd9e39",
"#8c6d31", "#e7969c", "#d6616b", "#ad494a", "#843c39",
"#de9ed6", "#ce6dbd", "#a55194", "#7b4173");
scale.domain.apply(scale, arguments);
return scale;
};
/**
* Returns a linear color ramp from the specified <tt>start</tt> color to the
* specified <tt>end</tt> color. The color arguments may be specified either as
* <tt>string</tt>s or as {@link pv.Color}s. This is equivalent to:
*
* <pre> pv.Scale.linear().domain(0, 1).range(...)</pre>
*
* @param {string} start the start color; may be a <tt>pv.Color</tt>.
* @param {string} end the end color; may be a <tt>pv.Color</tt>.
* @returns {Function} a color ramp from <tt>start</tt> to <tt>end</tt>.
* @see pv.Scale.linear
*/
pv.ramp = function(start, end) {
var scale = pv.Scale.linear();
scale.range.apply(scale, arguments);
return scale;
};
/**
* @private
* @namespace
*/
pv.Scene = pv.SvgScene = {
/* Various namespaces. */
svg: "http://www.w3.org/2000/svg",
xmlns: "http://www.w3.org/2000/xmlns",
xlink: "http://www.w3.org/1999/xlink",
xhtml: "http://www.w3.org/1999/xhtml",
/** The pre-multipled scale, based on any enclosing transforms. */
scale: 1,
/** The set of supported events. */
events: [
"DOMMouseScroll", // for Firefox
"mousewheel",
"mousedown",
"mouseup",
"mouseover",
"mouseout",
"mousemove",
"click",
"dblclick"
],
/** Implicit values for SVG and CSS properties. */
implicit: {
svg: {
"shape-rendering": "auto",
"pointer-events": "painted",
"x": 0,
"y": 0,
"dy": 0,
"text-anchor": "start",
"transform": "translate(0,0)",
"fill": "none",
"fill-opacity": 1,
"stroke": "none",
"stroke-opacity": 1,
"stroke-width": 1.5,
"stroke-linejoin": "miter"
},
css: {
"font": "10px sans-serif"
}
}
};
/**
* Updates the display for the specified array of scene nodes.
*
* @param scenes {array} an array of scene nodes.
*/
pv.SvgScene.updateAll = function(scenes) {
if (scenes.length
&& scenes[0].reverse
&& (scenes.type != "line")
&& (scenes.type != "area")) {
var reversed = pv.extend(scenes);
for (var i = 0, j = scenes.length - 1; j >= 0; i++, j--) {
reversed[i] = scenes[j];
}
scenes = reversed;
}
this.removeSiblings(this[scenes.type](scenes));
};
/**
* Creates a new SVG element of the specified type.
*
* @param type {string} an SVG element type, such as "rect".
* @returns a new SVG element.
*/
pv.SvgScene.create = function(type) {
return document.createElementNS(this.svg, type);
};
/**
* Expects the element <i>e</i> to be the specified type. If the element does
* not exist, a new one is created. If the element does exist but is the wrong
* type, it is replaced with the specified element.
*
* @param e the current SVG element.
* @param type {string} an SVG element type, such as "rect".
* @param attributes an optional attribute map.
* @param style an optional style map.
* @returns a new SVG element.
*/
pv.SvgScene.expect = function(e, type, attributes, style) {
if (e) {
if (e.tagName == "a") e = e.firstChild;
if (e.tagName != type) {
var n = this.create(type);
e.parentNode.replaceChild(n, e);
e = n;
}
} else {
e = this.create(type);
}
for (var name in attributes) {
var value = attributes[name];
if (value == this.implicit.svg[name]) value = null;
if (value == null) e.removeAttribute(name);
else e.setAttribute(name, value);
}
for (var name in style) {
var value = style[name];
if (value == this.implicit.css[name]) value = null;
if (value == null) e.style.removeProperty(name);
else e.style[name] = value;
}
return e;
};
/** TODO */
pv.SvgScene.append = function(e, scenes, index) {
e.$scene = {scenes:scenes, index:index};
e = this.title(e, scenes[index]);
if (!e.parentNode) scenes.$g.appendChild(e);
return e.nextSibling;
};
/**
* Applies a title tooltip to the specified element <tt>e</tt>, using the
* <tt>title</tt> property of the specified scene node <tt>s</tt>. Note that
* this implementation does not create an SVG <tt>title</tt> element as a child
* of <tt>e</tt>; although this is the recommended standard, it is only
* supported in Opera. Instead, an anchor element is created around the element
* <tt>e</tt>, and the <tt>xlink:title</tt> attribute is set accordingly.
*
* @param e an SVG element.
* @param s a scene node.
*/
pv.SvgScene.title = function(e, s) {
var a = e.parentNode;
if (a && (a.tagName != "a")) a = null;
if (s.title) {
if (!a) {
a = this.create("a");
if (e.parentNode) e.parentNode.replaceChild(a, e);
a.appendChild(e);
}
a.setAttributeNS(this.xlink, "title", s.title);
return a;
}
if (a) a.parentNode.replaceChild(e, a);
return e;
};
/** TODO */
pv.SvgScene.dispatch = pv.listener(function(e) {
var t = e.target.$scene;
if (t) {
var type = e.type;
/* Fixes for mousewheel support on Firefox & Opera. */
switch (type) {
case "DOMMouseScroll": {
type = "mousewheel";
e.wheel = -480 * e.detail;
break;
}
case "mousewheel": {
e.wheel = (window.opera ? 12 : 1) * e.wheelDelta;
break;
}
}
if (pv.Mark.dispatch(type, t.scenes, t.index)) e.preventDefault();
}
});
/** @private Remove siblings following element <i>e</i>. */
pv.SvgScene.removeSiblings = function(e) {
while (e) {
var n = e.nextSibling;
e.parentNode.removeChild(e);
e = n;
}
};
/** @private Do nothing when rendering undefined mark types. */
pv.SvgScene.undefined = function() {};
/**
* @private Converts the specified b-spline curve segment to a bezier curve
* compatible with SVG "C".
*
* @param p0 the first control point.
* @param p1 the second control point.
* @param p2 the third control point.
* @param p3 the fourth control point.
*/
pv.SvgScene.pathBasis = (function() {
/**
* Matrix to transform basis (b-spline) control points to bezier control
* points. Derived from FvD 11.2.8.
*/
var basis = [
[ 1/6, 2/3, 1/6, 0 ],
[ 0, 2/3, 1/3, 0 ],
[ 0, 1/3, 2/3, 0 ],
[ 0, 1/6, 2/3, 1/6 ]
];
/**
* Returns the point that is the weighted sum of the specified control points,
* using the specified weights. This method requires that there are four
* weights and four control points.
*/
function weight(w, p0, p1, p2, p3) {
return {
x: w[0] * p0.left + w[1] * p1.left + w[2] * p2.left + w[3] * p3.left,
y: w[0] * p0.top + w[1] * p1.top + w[2] * p2.top + w[3] * p3.top
};
}
var convert = function(p0, p1, p2, p3) {
var b1 = weight(basis[1], p0, p1, p2, p3),
b2 = weight(basis[2], p0, p1, p2, p3),
b3 = weight(basis[3], p0, p1, p2, p3);
return "C" + b1.x + "," + b1.y
+ "," + b2.x + "," + b2.y
+ "," + b3.x + "," + b3.y;
};
convert.segment = function(p0, p1, p2, p3) {
var b0 = weight(basis[0], p0, p1, p2, p3),
b1 = weight(basis[1], p0, p1, p2, p3),
b2 = weight(basis[2], p0, p1, p2, p3),
b3 = weight(basis[3], p0, p1, p2, p3);
return "M" + b0.x + "," + b0.y
+ "C" + b1.x + "," + b1.y
+ "," + b2.x + "," + b2.y
+ "," + b3.x + "," + b3.y;
};
return convert;
})();
/**
* @private Interpolates the given points using the basis spline interpolation.
* Returns an SVG path without the leading M instruction to allow path
* appending.
*
* @param points the array of points.
*/
pv.SvgScene.curveBasis = function(points) {
if (points.length <= 2) return "";
var path = "",
p0 = points[0],
p1 = p0,
p2 = p0,
p3 = points[1];
path += this.pathBasis(p0, p1, p2, p3);
for (var i = 2; i < points.length; i++) {
p0 = p1;
p1 = p2;
p2 = p3;
p3 = points[i];
path += this.pathBasis(p0, p1, p2, p3);
}
/* Cycle through to get the last point. */
path += this.pathBasis(p1, p2, p3, p3);
path += this.pathBasis(p2, p3, p3, p3);
return path;
};
/**
* @private Interpolates the given points using the basis spline interpolation.
* If points.length == tangents.length then a regular Hermite interpolation is
* performed, if points.length == tangents.length + 2 then the first and last
* segments are filled in with cubic bazier segments. Returns an array of path
* strings.
*
* @param points the array of points.
*/
pv.SvgScene.curveBasisSegments = function(points) {
if (points.length <= 2) return "";
var paths = [],
p0 = points[0],
p1 = p0,
p2 = p0,
p3 = points[1],
firstPath = this.pathBasis.segment(p0, p1, p2, p3);
p0 = p1;
p1 = p2;
p2 = p3;
p3 = points[2];
paths.push(firstPath + this.pathBasis(p0, p1, p2, p3)); // merge first & second path
for (var i = 3; i < points.length; i++) {
p0 = p1;
p1 = p2;
p2 = p3;
p3 = points[i];
paths.push(this.pathBasis.segment(p0, p1, p2, p3));
}
// merge last & second-to-last path
paths.push(this.pathBasis.segment(p1, p2, p3, p3) + this.pathBasis(p2, p3, p3, p3));
return paths;
};
/**
* @private Interpolates the given points with respective tangents using the cubic
* Hermite spline interpolation. If points.length == tangents.length then a regular
* Hermite interpolation is performed, if points.length == tangents.length + 2 then
* the first and last segments are filled in with cubic bazier segments.
* Returns an SVG path without the leading M instruction to allow path appending.
*
* @param points the array of points.
* @param tangents the array of tangent vectors.
*/
pv.SvgScene.curveHermite = function(points, tangents) {
if (tangents.length < 1
|| (points.length != tangents.length
&& points.length != tangents.length + 2)) return "";
var quad = points.length != tangents.length,
path = "",
p0 = points[0],
p = points[1],
t0 = tangents[0],
t = t0,
pi = 1;
if (quad) {
path += "Q" + (p.left - t0.x * 2 / 3) + "," + (p.top - t0.y * 2 / 3)
+ "," + p.left + "," + p.top;
p0 = points[1];
pi = 2;
}
if (tangents.length > 1) {
t = tangents[1];
p = points[pi];
pi++;
path += "C" + (p0.left + t0.x) + "," + (p0.top + t0.y)
+ "," + (p.left - t.x) + "," + (p.top - t.y)
+ "," + p.left + "," + p.top;
for (var i = 2; i < tangents.length; i++, pi++) {
p = points[pi];
t = tangents[i];
path += "S" + (p.left - t.x) + "," + (p.top - t.y)
+ "," + p.left + "," + p.top;
}
}
if (quad) {
var lp = points[pi];
path += "Q" + (p.left + t.x * 2 / 3) + "," + (p.top + t.y * 2 / 3) + ","
+ lp.left + "," + lp.top;
}
return path;
};
/**
* @private Interpolates the given points with respective tangents using the
* cubic Hermite spline interpolation. Returns an array of path strings.
*
* @param points the array of points.
* @param tangents the array of tangent vectors.
*/
pv.SvgScene.curveHermiteSegments = function(points, tangents) {
if (tangents.length < 1
|| (points.length != tangents.length
&& points.length != tangents.length + 2)) return [];
var quad = points.length != tangents.length,
paths = [],
p0 = points[0],
p = p0,
t0 = tangents[0],
t = t0,
pi = 1;
if (quad) {
p = points[1];
paths.push("M" + p0.left + "," + p0.top
+ "Q" + (p.left - t.x * 2 / 3) + "," + (p.top - t.y * 2 / 3)
+ "," + p.left + "," + p.top);
pi = 2;
}
for (var i = 1; i < tangents.length; i++, pi++) {
p0 = p;
t0 = t;
p = points[pi];
t = tangents[i];
paths.push("M" + p0.left + "," + p0.top
+ "C" + (p0.left + t0.x) + "," + (p0.top + t0.y)
+ "," + (p.left - t.x) + "," + (p.top - t.y)
+ "," + p.left + "," + p.top);
}
if (quad) {
var lp = points[pi];
paths.push("M" + p.left + "," + p.top
+ "Q" + (p.left + t.x * 2 / 3) + "," + (p.top + t.y * 2 / 3) + ","
+ lp.left + "," + lp.top);
}
return paths;
};
/**
* @private Computes the tangents for the given points needed for cardinal
* spline interpolation. Returns an array of tangent vectors. Note: that for n
* points only the n-2 well defined tangents are returned.
*
* @param points the array of points.
* @param tension the tension of hte cardinal spline.
*/
pv.SvgScene.cardinalTangents = function(points, tension) {
var tangents = [],
a = (1 - tension) / 2,
p0 = points[0],
p1 = points[1],
p2 = points[2];
for (var i = 3; i < points.length; i++) {
tangents.push({x: a * (p2.left - p0.left), y: a * (p2.top - p0.top)});
p0 = p1;
p1 = p2;
p2 = points[i];
}
tangents.push({x: a * (p2.left - p0.left), y: a * (p2.top - p0.top)});
return tangents;
};
/**
* @private Interpolates the given points using cardinal spline interpolation.
* Returns an SVG path without the leading M instruction to allow path
* appending.
*
* @param points the array of points.
* @param tension the tension of hte cardinal spline.
*/
pv.SvgScene.curveCardinal = function(points, tension) {
if (points.length <= 2) return "";
return this.curveHermite(points, this.cardinalTangents(points, tension));
};
/**
* @private Interpolates the given points using cardinal spline interpolation.
* Returns an array of path strings.
*
* @param points the array of points.
* @param tension the tension of hte cardinal spline.
*/
pv.SvgScene.curveCardinalSegments = function(points, tension) {
if (points.length <= 2) return "";
return this.curveHermiteSegments(points, this.cardinalTangents(points, tension));
};
/**
* @private Interpolates the given points using Fritsch-Carlson Monotone cubic
* Hermite interpolation. Returns an array of tangent vectors.
*
* @param points the array of points.
*/
pv.SvgScene.monotoneTangents = function(points) {
var tangents = [],
d = [],
m = [],
dx = [],
k = 0;
/* Compute the slopes of the secant lines between successive points. */
for (k = 0; k < points.length-1; k++) {
d[k] = (points[k+1].top - points[k].top)/(points[k+1].left - points[k].left);
}
/* Initialize the tangents at every point as the average of the secants. */
m[0] = d[0];
dx[0] = points[1].left - points[0].left;
for (k = 1; k < points.length - 1; k++) {
m[k] = (d[k-1]+d[k])/2;
dx[k] = (points[k+1].left - points[k-1].left)/2;
}
m[k] = d[k-1];
dx[k] = (points[k].left - points[k-1].left);
/* Step 3. Very important, step 3. Yep. Wouldn't miss it. */
for (k = 0; k < points.length - 1; k++) {
if (d[k] == 0) {
m[ k ] = 0;
m[k+1] = 0;
}
}
/* Step 4 + 5. Out of 5 or more steps. */
for (k = 0; k < points.length - 1; k++) {
if ((Math.abs(m[k]) < 1e-5) || (Math.abs(m[k+1]) < 1e-5)) continue;
var ak = m[k] / d[k],
bk = m[k + 1] / d[k],
s = ak * ak + bk * bk; // monotone constant (?)
if (s > 9) {
var tk = 3 / Math.sqrt(s);
m[k] = tk * ak * d[k];
m[k + 1] = tk * bk * d[k];
}
}
var len;
for (var i = 0; i < points.length; i++) {
len = 1 + m[i] * m[i]; // pv.vector(1, m[i]).norm().times(dx[i]/3)
tangents.push({x: dx[i] / 3 / len, y: m[i] * dx[i] / 3 / len});
}
return tangents;
};
/**
* @private Interpolates the given points using Fritsch-Carlson Monotone cubic
* Hermite interpolation. Returns an SVG path without the leading M instruction
* to allow path appending.
*
* @param points the array of points.
*/
pv.SvgScene.curveMonotone = function(points) {
if (points.length <= 2) return "";
return this.curveHermite(points, this.monotoneTangents(points));
}
/**
* @private Interpolates the given points using Fritsch-Carlson Monotone cubic
* Hermite interpolation.
* Returns an array of path strings.
*
* @param points the array of points.
*/
pv.SvgScene.curveMonotoneSegments = function(points) {
if (points.length <= 2) return "";
return this.curveHermiteSegments(points, this.monotoneTangents(points));
};
pv.SvgScene.area = function(scenes) {
var e = scenes.$g.firstChild;
if (!scenes.length) return e;
var s = scenes[0];
/* segmented */
if (s.segmented) return this.areaSegment(scenes);
/* visible */
if (!s.visible) return e;
var fill = s.fillStyle, stroke = s.strokeStyle;
if (!fill.opacity && !stroke.opacity) return e;
/** @private Computes the straight path for the range [i, j]. */
function path(i, j) {
var p1 = [], p2 = [];
for (var k = j; i <= k; i++, j--) {
var si = scenes[i],
sj = scenes[j],
pi = si.left + "," + si.top,
pj = (sj.left + sj.width) + "," + (sj.top + sj.height);
/* interpolate */
if (i < k) {
var sk = scenes[i + 1], sl = scenes[j - 1];
switch (s.interpolate) {
case "step-before": {
pi += "V" + sk.top;
pj += "H" + (sl.left + sl.width);
break;
}
case "step-after": {
pi += "H" + sk.left;
pj += "V" + (sl.top + sl.height);
break;
}
}
}
p1.push(pi);
p2.push(pj);
}
return p1.concat(p2).join("L");
}
/** @private Computes the curved path for the range [i, j]. */
function pathCurve(i, j) {
var pointsT = [], pointsB = [], pathT, pathB;
for (var k = j; i <= k; i++, j--) {
var sj = scenes[j];
pointsT.push(scenes[i]);
pointsB.push({left: sj.left + sj.width, top: sj.top + sj.height});
}
if (s.interpolate == "basis") {
pathT = pv.SvgScene.curveBasis(pointsT);
pathB = pv.SvgScene.curveBasis(pointsB);
} else if (s.interpolate == "cardinal") {
pathT = pv.SvgScene.curveCardinal(pointsT, s.tension);
pathB = pv.SvgScene.curveCardinal(pointsB, s.tension);
} else { // monotone
pathT = pv.SvgScene.curveMonotone(pointsT);
pathB = pv.SvgScene.curveMonotone(pointsB);
}
return pointsT[0].left + "," + pointsT[0].top + pathT
+ "L" + pointsB[0].left + "," + pointsB[0].top + pathB;
}
/* points */
var d = [], si, sj;
for (var i = 0; i < scenes.length; i++) {
si = scenes[i]; if (!si.width && !si.height) continue;
for (var j = i + 1; j < scenes.length; j++) {
sj = scenes[j]; if (!sj.width && !sj.height) break;
}
if (i && (s.interpolate != "step-after")) i--;
if ((j < scenes.length) && (s.interpolate != "step-before")) j++;
d.push(((j - i > 2
&& (s.interpolate == "basis"
|| s.interpolate == "cardinal"
|| s.interpolate == "monotone"))
? pathCurve : path)(i, j - 1));
i = j - 1;
}
if (!d.length) return e;
e = this.expect(e, "path", {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events,
"cursor": s.cursor,
"d": "M" + d.join("ZM") + "Z",
"fill": fill.color,
"fill-opacity": fill.opacity || null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity || null,
"stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
});
return this.append(e, scenes, 0);
};
pv.SvgScene.areaSegment = function(scenes) {
var e = scenes.$g.firstChild, s = scenes[0], pathsT, pathsB;
if (s.interpolate == "basis"
|| s.interpolate == "cardinal"
|| s.interpolate == "monotone") {
var pointsT = [], pointsB = [];
for (var i = 0, n = scenes.length; i < n; i++) {
var sj = scenes[n - i - 1];
pointsT.push(scenes[i]);
pointsB.push({left: sj.left + sj.width, top: sj.top + sj.height});
}
if (s.interpolate == "basis") {
pathsT = this.curveBasisSegments(pointsT);
pathsB = this.curveBasisSegments(pointsB);
} else if (s.interpolate == "cardinal") {
pathsT = this.curveCardinalSegments(pointsT, s.tension);
pathsB = this.curveCardinalSegments(pointsB, s.tension);
} else { // monotone
pathsT = this.curveMonotoneSegments(pointsT);
pathsB = this.curveMonotoneSegments(pointsB);
}
}
for (var i = 0, n = scenes.length - 1; i < n; i++) {
var s1 = scenes[i], s2 = scenes[i + 1];
/* visible */
if (!s1.visible || !s2.visible) continue;
var fill = s1.fillStyle, stroke = s1.strokeStyle;
if (!fill.opacity && !stroke.opacity) continue;
var d;
if (pathsT) {
var pathT = pathsT[i],
pathB = "L" + pathsB[n - i - 1].substr(1);
d = pathT + pathB + "Z";
} else {
/* interpolate */
var si = s1, sj = s2;
switch (s1.interpolate) {
case "step-before": si = s2; break;
case "step-after": sj = s1; break;
}
/* path */
d = "M" + s1.left + "," + si.top
+ "L" + s2.left + "," + sj.top
+ "L" + (s2.left + s2.width) + "," + (sj.top + sj.height)
+ "L" + (s1.left + s1.width) + "," + (si.top + si.height)
+ "Z";
}
e = this.expect(e, "path", {
"shape-rendering": s1.antialias ? null : "crispEdges",
"pointer-events": s1.events,
"cursor": s1.cursor,
"d": d,
"fill": fill.color,
"fill-opacity": fill.opacity || null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity || null,
"stroke-width": stroke.opacity ? s1.lineWidth / this.scale : null
});
e = this.append(e, scenes, i);
}
return e;
};
pv.SvgScene.bar = function(scenes) {
var e = scenes.$g.firstChild;
for (var i = 0; i < scenes.length; i++) {
var s = scenes[i];
/* visible */
if (!s.visible) continue;
var fill = s.fillStyle, stroke = s.strokeStyle;
if (!fill.opacity && !stroke.opacity) continue;
e = this.expect(e, "rect", {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events,
"cursor": s.cursor,
"x": s.left,
"y": s.top,
"width": Math.max(1E-10, s.width),
"height": Math.max(1E-10, s.height),
"fill": fill.color,
"fill-opacity": fill.opacity || null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity || null,
"stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
});
e = this.append(e, scenes, i);
}
return e;
};
pv.SvgScene.dot = function(scenes) {
var e = scenes.$g.firstChild;
for (var i = 0; i < scenes.length; i++) {
var s = scenes[i];
/* visible */
if (!s.visible) continue;
var fill = s.fillStyle, stroke = s.strokeStyle;
if (!fill.opacity && !stroke.opacity) continue;
/* points */
var radius = s.radius, path = null;
switch (s.shape) {
case "cross": {
path = "M" + -radius + "," + -radius
+ "L" + radius + "," + radius
+ "M" + radius + "," + -radius
+ "L" + -radius + "," + radius;
break;
}
case "triangle": {
var h = radius, w = radius * 1.1547; // 2 / Math.sqrt(3)
path = "M0," + h
+ "L" + w +"," + -h
+ " " + -w + "," + -h
+ "Z";
break;
}
case "diamond": {
radius *= Math.SQRT2;
path = "M0," + -radius
+ "L" + radius + ",0"
+ " 0," + radius
+ " " + -radius + ",0"
+ "Z";
break;
}
case "square": {
path = "M" + -radius + "," + -radius
+ "L" + radius + "," + -radius
+ " " + radius + "," + radius
+ " " + -radius + "," + radius
+ "Z";
break;
}
case "tick": {
path = "M0,0L0," + -s.size;
break;
}
case "bar": {
path = "M0," + (s.size / 2) + "L0," + -(s.size / 2);
break;
}
}
/* Use <circle> for circles, <path> for everything else. */
var svg = {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events,
"cursor": s.cursor,
"fill": fill.color,
"fill-opacity": fill.opacity || null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity || null,
"stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
};
if (path) {
svg.transform = "translate(" + s.left + "," + s.top + ")";
if (s.angle) svg.transform += " rotate(" + 180 * s.angle / Math.PI + ")";
svg.d = path;
e = this.expect(e, "path", svg);
} else {
svg.cx = s.left;
svg.cy = s.top;
svg.r = radius;
e = this.expect(e, "circle", svg);
}
e = this.append(e, scenes, i);
}
return e;
};
pv.SvgScene.image = function(scenes) {
var e = scenes.$g.firstChild;
for (var i = 0; i < scenes.length; i++) {
var s = scenes[i];
/* visible */
if (!s.visible) continue;
/* fill */
e = this.fill(e, scenes, i);
/* image */
if (s.image) {
e = this.expect(e, "foreignObject", {
"cursor": s.cursor,
"x": s.left,
"y": s.top,
"width": s.width,
"height": s.height
});
var c = e.firstChild || e.appendChild(document.createElementNS(this.xhtml, "canvas"));
c.$scene = {scenes:scenes, index:i};
c.style.width = s.width;
c.style.height = s.height;
c.width = s.imageWidth;
c.height = s.imageHeight;
c.getContext("2d").putImageData(s.image, 0, 0);
} else {
e = this.expect(e, "image", {
"preserveAspectRatio": "none",
"cursor": s.cursor,
"x": s.left,
"y": s.top,
"width": s.width,
"height": s.height
});
e.setAttributeNS(this.xlink, "href", s.url);
}
e = this.append(e, scenes, i);
/* stroke */
e = this.stroke(e, scenes, i);
}
return e;
};
pv.SvgScene.label = function(scenes) {
var e = scenes.$g.firstChild;
for (var i = 0; i < scenes.length; i++) {
var s = scenes[i];
/* visible */
if (!s.visible) continue;
var fill = s.textStyle;
if (!fill.opacity || !s.text) continue;
/* text-baseline, text-align */
var x = 0, y = 0, dy = 0, anchor = "start";
switch (s.textBaseline) {
case "middle": dy = ".35em"; break;
case "top": dy = ".71em"; y = s.textMargin; break;
case "bottom": y = "-" + s.textMargin; break;
}
switch (s.textAlign) {
case "right": anchor = "end"; x = "-" + s.textMargin; break;
case "center": anchor = "middle"; break;
case "left": x = s.textMargin; break;
}
e = this.expect(e, "text", {
"pointer-events": s.events,
"cursor": s.cursor,
"x": x,
"y": y,
"dy": dy,
"transform": "translate(" + s.left + "," + s.top + ")"
+ (s.textAngle ? " rotate(" + 180 * s.textAngle / Math.PI + ")" : "")
+ (this.scale != 1 ? " scale(" + 1 / this.scale + ")" : ""),
"fill": fill.color,
"fill-opacity": fill.opacity || null,
"text-anchor": anchor
}, {
"font": s.font,
"text-shadow": s.textShadow,
"text-decoration": s.textDecoration
});
if (e.firstChild) e.firstChild.nodeValue = s.text;
else e.appendChild(document.createTextNode(s.text));
e = this.append(e, scenes, i);
}
return e;
};
pv.SvgScene.line = function(scenes) {
var e = scenes.$g.firstChild;
if (scenes.length < 2) return e;
var s = scenes[0];
/* segmented */
if (s.segmented) return this.lineSegment(scenes);
/* visible */
if (!s.visible) return e;
var fill = s.fillStyle, stroke = s.strokeStyle;
if (!fill.opacity && !stroke.opacity) return e;
/* points */
var d = "M" + s.left + "," + s.top;
if (scenes.length > 2 && (s.interpolate == "basis" || s.interpolate == "cardinal" || s.interpolate == "monotone")) {
switch (s.interpolate) {
case "basis": d += this.curveBasis(scenes); break;
case "cardinal": d += this.curveCardinal(scenes, s.tension); break;
case "monotone": d += this.curveMonotone(scenes); break;
}
} else {
for (var i = 1; i < scenes.length; i++) {
d += this.pathSegment(scenes[i - 1], scenes[i]);
}
}
e = this.expect(e, "path", {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events,
"cursor": s.cursor,
"d": d,
"fill": fill.color,
"fill-opacity": fill.opacity || null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity || null,
"stroke-width": stroke.opacity ? s.lineWidth / this.scale : null,
"stroke-linejoin": s.lineJoin
});
return this.append(e, scenes, 0);
};
pv.SvgScene.lineSegment = function(scenes) {
var e = scenes.$g.firstChild;
var s = scenes[0];
var paths;
switch (s.interpolate) {
case "basis": paths = this.curveBasisSegments(scenes); break;
case "cardinal": paths = this.curveCardinalSegments(scenes, s.tension); break;
case "monotone": paths = this.curveMonotoneSegments(scenes); break;
}
for (var i = 0, n = scenes.length - 1; i < n; i++) {
var s1 = scenes[i], s2 = scenes[i + 1];
/* visible */
if (!s1.visible || !s2.visible) continue;
var stroke = s1.strokeStyle, fill = pv.Color.transparent;
if (!stroke.opacity) continue;
/* interpolate */
var d;
if ((s1.interpolate == "linear") && (s1.lineJoin == "miter")) {
fill = stroke;
stroke = pv.Color.transparent;
d = this.pathJoin(scenes[i - 1], s1, s2, scenes[i + 2]);
} else if(paths) {
d = paths[i];
} else {
d = "M" + s1.left + "," + s1.top + this.pathSegment(s1, s2);
}
e = this.expect(e, "path", {
"shape-rendering": s1.antialias ? null : "crispEdges",
"pointer-events": s1.events,
"cursor": s1.cursor,
"d": d,
"fill": fill.color,
"fill-opacity": fill.opacity || null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity || null,
"stroke-width": stroke.opacity ? s1.lineWidth / this.scale : null,
"stroke-linejoin": s1.lineJoin
});
e = this.append(e, scenes, i);
}
return e;
};
/** @private Returns the path segment for the specified points. */
pv.SvgScene.pathSegment = function(s1, s2) {
var l = 1; // sweep-flag
switch (s1.interpolate) {
case "polar-reverse":
l = 0;
case "polar": {
var dx = s2.left - s1.left,
dy = s2.top - s1.top,
e = 1 - s1.eccentricity,
r = Math.sqrt(dx * dx + dy * dy) / (2 * e);
if ((e <= 0) || (e > 1)) break; // draw a straight line
return "A" + r + "," + r + " 0 0," + l + " " + s2.left + "," + s2.top;
}
case "step-before": return "V" + s2.top + "H" + s2.left;
case "step-after": return "H" + s2.left + "V" + s2.top;
}
return "L" + s2.left + "," + s2.top;
};
/** @private Line-line intersection, per Akenine-Moller 16.16.1. */
pv.SvgScene.lineIntersect = function(o1, d1, o2, d2) {
return o1.plus(d1.times(o2.minus(o1).dot(d2.perp()) / d1.dot(d2.perp())));
}
/** @private Returns the miter join path for the specified points. */
pv.SvgScene.pathJoin = function(s0, s1, s2, s3) {
/*
* P1-P2 is the current line segment. V is a vector that is perpendicular to
* the line segment, and has length lineWidth / 2. ABCD forms the initial
* bounding box of the line segment (i.e., the line segment if we were to do
* no joins).
*/
var p1 = pv.vector(s1.left, s1.top),
p2 = pv.vector(s2.left, s2.top),
p = p2.minus(p1),
v = p.perp().norm(),
w = v.times(s1.lineWidth / (2 * this.scale)),
a = p1.plus(w),
b = p2.plus(w),
c = p2.minus(w),
d = p1.minus(w);
/*
* Start join. P0 is the previous line segment's start point. We define the
* cutting plane as the average of the vector perpendicular to P0-P1, and
* the vector perpendicular to P1-P2. This insures that the cross-section of
* the line on the cutting plane is equal if the line-width is unchanged.
* Note that we don't implement miter limits, so these can get wild.
*/
if (s0 && s0.visible) {
var v1 = p1.minus(s0.left, s0.top).perp().norm().plus(v);
d = this.lineIntersect(p1, v1, d, p);
a = this.lineIntersect(p1, v1, a, p);
}
/* Similarly, for end join. */
if (s3 && s3.visible) {
var v2 = pv.vector(s3.left, s3.top).minus(p2).perp().norm().plus(v);
c = this.lineIntersect(p2, v2, c, p);
b = this.lineIntersect(p2, v2, b, p);
}
return "M" + a.x + "," + a.y
+ "L" + b.x + "," + b.y
+ " " + c.x + "," + c.y
+ " " + d.x + "," + d.y;
};
pv.SvgScene.panel = function(scenes) {
var g = scenes.$g, e = g && g.firstChild;
for (var i = 0; i < scenes.length; i++) {
var s = scenes[i];
/* visible */
if (!s.visible) continue;
/* svg */
if (!scenes.parent) {
s.canvas.style.display = "inline-block";
if (g && (g.parentNode != s.canvas)) {
g = s.canvas.firstChild;
e = g && g.firstChild;
}
if (!g) {
g = s.canvas.appendChild(this.create("svg"));
g.setAttribute("font-size", "10px");
g.setAttribute("font-family", "sans-serif");
g.setAttribute("fill", "none");
g.setAttribute("stroke", "none");
g.setAttribute("stroke-width", 1.5);
for (var j = 0; j < this.events.length; j++) {
g.addEventListener(this.events[j], this.dispatch, false);
}
e = g.firstChild;
}
scenes.$g = g;
g.setAttribute("width", s.width + s.left + s.right);
g.setAttribute("height", s.height + s.top + s.bottom);
}
/* clip (nest children) */
if (s.overflow == "hidden") {
var id = pv.id().toString(36),
c = this.expect(e, "g", {"clip-path": "url(#" + id + ")"});
if (!c.parentNode) g.appendChild(c);
scenes.$g = g = c;
e = c.firstChild;
e = this.expect(e, "clipPath", {"id": id});
var r = e.firstChild || e.appendChild(this.create("rect"));
r.setAttribute("x", s.left);
r.setAttribute("y", s.top);
r.setAttribute("width", s.width);
r.setAttribute("height", s.height);
if (!e.parentNode) g.appendChild(e);
e = e.nextSibling;
}
/* fill */
e = this.fill(e, scenes, i);
/* transform (push) */
var k = this.scale,
t = s.transform,
x = s.left + t.x,
y = s.top + t.y;
this.scale *= t.k;
/* children */
for (var j = 0; j < s.children.length; j++) {
s.children[j].$g = e = this.expect(e, "g", {
"transform": "translate(" + x + "," + y + ")"
+ (t.k != 1 ? " scale(" + t.k + ")" : "")
});
this.updateAll(s.children[j]);
if (!e.parentNode) g.appendChild(e);
e = e.nextSibling;
}
/* transform (pop) */
this.scale = k;
/* stroke */
e = this.stroke(e, scenes, i);
/* clip (restore group) */
if (s.overflow == "hidden") {
scenes.$g = g = c.parentNode;
e = c.nextSibling;
}
}
return e;
};
pv.SvgScene.fill = function(e, scenes, i) {
var s = scenes[i], fill = s.fillStyle;
if (fill.opacity || s.events == "all") {
e = this.expect(e, "rect", {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events,
"cursor": s.cursor,
"x": s.left,
"y": s.top,
"width": s.width,
"height": s.height,
"fill": fill.color,
"fill-opacity": fill.opacity,
"stroke": null
});
e = this.append(e, scenes, i);
}
return e;
};
pv.SvgScene.stroke = function(e, scenes, i) {
var s = scenes[i], stroke = s.strokeStyle;
if (stroke.opacity || s.events == "all") {
e = this.expect(e, "rect", {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events == "all" ? "stroke" : s.events,
"cursor": s.cursor,
"x": s.left,
"y": s.top,
"width": Math.max(1E-10, s.width),
"height": Math.max(1E-10, s.height),
"fill": null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity,
"stroke-width": s.lineWidth / this.scale
});
e = this.append(e, scenes, i);
}
return e;
};
pv.SvgScene.rule = function(scenes) {
var e = scenes.$g.firstChild;
for (var i = 0; i < scenes.length; i++) {
var s = scenes[i];
/* visible */
if (!s.visible) continue;
var stroke = s.strokeStyle;
if (!stroke.opacity) continue;
e = this.expect(e, "line", {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events,
"cursor": s.cursor,
"x1": s.left,
"y1": s.top,
"x2": s.left + s.width,
"y2": s.top + s.height,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity,
"stroke-width": s.lineWidth / this.scale
});
e = this.append(e, scenes, i);
}
return e;
};
pv.SvgScene.wedge = function(scenes) {
var e = scenes.$g.firstChild;
for (var i = 0; i < scenes.length; i++) {
var s = scenes[i];
/* visible */
if (!s.visible) continue;
var fill = s.fillStyle, stroke = s.strokeStyle;
if (!fill.opacity && !stroke.opacity) continue;
/* points */
var r1 = s.innerRadius, r2 = s.outerRadius, a = Math.abs(s.angle), p;
if (a >= 2 * Math.PI) {
if (r1) {
p = "M0," + r2
+ "A" + r2 + "," + r2 + " 0 1,1 0," + (-r2)
+ "A" + r2 + "," + r2 + " 0 1,1 0," + r2
+ "M0," + r1
+ "A" + r1 + "," + r1 + " 0 1,1 0," + (-r1)
+ "A" + r1 + "," + r1 + " 0 1,1 0," + r1
+ "Z";
} else {
p = "M0," + r2
+ "A" + r2 + "," + r2 + " 0 1,1 0," + (-r2)
+ "A" + r2 + "," + r2 + " 0 1,1 0," + r2
+ "Z";
}
} else {
var sa = Math.min(s.startAngle, s.endAngle),
ea = Math.max(s.startAngle, s.endAngle),
c1 = Math.cos(sa), c2 = Math.cos(ea),
s1 = Math.sin(sa), s2 = Math.sin(ea);
if (r1) {
p = "M" + r2 * c1 + "," + r2 * s1
+ "A" + r2 + "," + r2 + " 0 "
+ ((a < Math.PI) ? "0" : "1") + ",1 "
+ r2 * c2 + "," + r2 * s2
+ "L" + r1 * c2 + "," + r1 * s2
+ "A" + r1 + "," + r1 + " 0 "
+ ((a < Math.PI) ? "0" : "1") + ",0 "
+ r1 * c1 + "," + r1 * s1 + "Z";
} else {
p = "M" + r2 * c1 + "," + r2 * s1
+ "A" + r2 + "," + r2 + " 0 "
+ ((a < Math.PI) ? "0" : "1") + ",1 "
+ r2 * c2 + "," + r2 * s2 + "L0,0Z";
}
}
e = this.expect(e, "path", {
"shape-rendering": s.antialias ? null : "crispEdges",
"pointer-events": s.events,
"cursor": s.cursor,
"transform": "translate(" + s.left + "," + s.top + ")",
"d": p,
"fill": fill.color,
"fill-rule": "evenodd",
"fill-opacity": fill.opacity || null,
"stroke": stroke.color,
"stroke-opacity": stroke.opacity || null,
"stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
});
e = this.append(e, scenes, i);
}
return e;
};
/**
* Constructs a new mark with default properties. Marks, with the exception of
* the root panel, are not typically constructed directly; instead, they are
* added to a panel or an existing mark via {@link pv.Mark#add}.
*
* @class Represents a data-driven graphical mark. The <tt>Mark</tt> class is
* the base class for all graphical marks in Protovis; it does not provide any
* specific rendering functionality, but together with {@link Panel} establishes
* the core framework.
*
* <p>Concrete mark types include familiar visual elements such as bars, lines
* and labels. Although a bar mark may be used to construct a bar chart, marks
* know nothing about charts; it is only through their specification and
* composition that charts are produced. These building blocks permit many
* combinatorial possibilities.
*
* <p>Marks are associated with <b>data</b>: a mark is generated once per
* associated datum, mapping the datum to visual <b>properties</b> such as
* position and color. Thus, a single mark specification represents a set of
* visual elements that share the same data and visual encoding. The type of
* mark defines the names of properties and their meaning. A property may be
* static, ignoring the associated datum and returning a constant; or, it may be
* dynamic, derived from the associated datum or index. Such dynamic encodings
* can be specified succinctly using anonymous functions. Special properties
* called event handlers can be registered to add interactivity.
*
* <p>Protovis uses <b>inheritance</b> to simplify the specification of related
* marks: a new mark can be derived from an existing mark, inheriting its
* properties. The new mark can then override properties to specify new
* behavior, potentially in terms of the old behavior. In this way, the old mark
* serves as the <b>prototype</b> for the new mark. Most mark types share the
* same basic properties for consistency and to facilitate inheritance.
*
* <p>The prioritization of redundant properties is as follows:<ol>
*
* <li>If the <tt>width</tt> property is not specified (i.e., null), its value
* is the width of the parent panel, minus this mark's left and right margins;
* the left and right margins are zero if not specified.
*
* <li>Otherwise, if the <tt>right</tt> margin is not specified, its value is
* the width of the parent panel, minus this mark's width and left margin; the
* left margin is zero if not specified.
*
* <li>Otherwise, if the <tt>left</tt> property is not specified, its value is
* the width of the parent panel, minus this mark's width and the right margin.
*
* </ol>This prioritization is then duplicated for the <tt>height</tt>,
* <tt>bottom</tt> and <tt>top</tt> properties, respectively.
*
* <p>While most properties are <i>variable</i>, some mark types, such as lines
* and areas, generate a single visual element rather than a distinct visual
* element per datum. With these marks, some properties may be <b>fixed</b>.
* Fixed properties can vary per mark, but not <i>per datum</i>! These
* properties are evaluated solely for the first (0-index) datum, and typically
* are specified as a constant. However, it is valid to use a function if the
* property varies between panels or is dynamically generated.
*
* <p>See also the <a href="../../api/">Protovis guide</a>.
*/
pv.Mark = function() {
/*
* TYPE 0 constant defs
* TYPE 1 function defs
* TYPE 2 constant properties
* TYPE 3 function properties
* in order of evaluation!
*/
this.$properties = [];
this.$handlers = {};
};
/** @private Records which properties are defined on this mark type. */
pv.Mark.prototype.properties = {};
/** @private Records the cast function for each property. */
pv.Mark.cast = {};
/**
* @private Defines and registers a property method for the property with the
* given name. This method should be called on a mark class prototype to define
* each exposed property. (Note this refers to the JavaScript
* <tt>prototype</tt>, not the Protovis mark prototype, which is the {@link
* #proto} field.)
*
* <p>The created property method supports several modes of invocation: <ol>
*
* <li>If invoked with a <tt>Function</tt> argument, this function is evaluated
* for each associated datum. The return value of the function is used as the
* computed property value. The context of the function (<tt>this</tt>) is this
* mark. The arguments to the function are the associated data of this mark and
* any enclosing panels. For example, a linear encoding of numerical data to
* height is specified as
*
* <pre>m.height(function(d) d * 100);</pre>
*
* The expression <tt>d * 100</tt> will be evaluated for the height property of
* each mark instance. The return value of the property method (e.g.,
* <tt>m.height</tt>) is this mark (<tt>m</tt>)).<p>
*
* <li>If invoked with a non-function argument, the property is treated as a
* constant. The return value of the property method (e.g., <tt>m.height</tt>)
* is this mark.<p>
*
* <li>If invoked with no arguments, the computed property value for the current
* mark instance in the scene graph is returned. This facilitates <i>property
* chaining</i>, where one mark's properties are defined in terms of another's.
* For example, to offset a mark's location from its prototype, you might say
*
* <pre>m.top(function() this.proto.top() + 10);</pre>
*
* Note that the index of the mark being evaluated (in the above example,
* <tt>this.proto</tt>) is inherited from the <tt>Mark</tt> class and set by
* this mark. So, if the fifth element's top property is being evaluated, the
* fifth instance of <tt>this.proto</tt> will similarly be queried for the value
* of its top property. If the mark being evaluated has a different number of
* instances, or its data is unrelated, the behavior of this method is
* undefined. In these cases it may be better to index the <tt>scene</tt>
* explicitly to specify the exact instance.
*
* </ol><p>Property names should follow standard JavaScript method naming
* conventions, using lowerCamel-style capitalization.
*
* <p>In addition to creating the property method, every property is registered
* in the {@link #properties} map on the <tt>prototype</tt>. Although this is an
* instance field, it is considered immutable and shared by all instances of a
* given mark type. The <tt>properties</tt> map can be queried to see if a mark
* type defines a particular property, such as width or height.
*
* @param {string} name the property name.
* @param {function} [cast] the cast function for this property.
*/
pv.Mark.prototype.property = function(name, cast) {
if (!this.hasOwnProperty("properties")) {
this.properties = pv.extend(this.properties);
}
this.properties[name] = true;
/*
* Define the setter-getter globally, since the default behavior should be the
* same for all properties, and since the Protovis inheritance chain is
* independent of the JavaScript inheritance chain. For example, anchors
* define a "name" property that is evaluated on derived marks, even though
* those marks don't normally have a name.
*/
pv.Mark.prototype.propertyMethod(name, false, pv.Mark.cast[name] = cast);
return this;
};
/**
* @private Defines a setter-getter for the specified property.
*
* <p>If a cast function has been assigned to the specified property name, the
* property function is wrapped by the cast function, or, if a constant is
* specified, the constant is immediately cast. Note, however, that if the
* property value is null, the cast function is not invoked.
*
* @param {string} name the property name.
* @param {boolean} [def] whether is a property or a def.
* @param {function} [cast] the cast function for this property.
*/
pv.Mark.prototype.propertyMethod = function(name, def, cast) {
if (!cast) cast = pv.Mark.cast[name];
this[name] = function(v) {
/* If this is a def, use it rather than property. */
if (def && this.scene) {
var defs = this.scene.defs;
if (arguments.length) {
defs[name] = {
id: (v == null) ? 0 : pv.id(),
value: ((v != null) && cast) ? cast(v) : v
};
return this;
}
return defs[name] ? defs[name].value : null;
}
/* If arguments are specified, set the property value. */
if (arguments.length) {
var type = !def << 1 | (typeof v == "function");
this.propertyValue(name, (type & 1 && cast) ? function() {
var x = v.apply(this, arguments);
return (x != null) ? cast(x) : null;
} : (((v != null) && cast) ? cast(v) : v)).type = type;
return this;
}
return this.instance()[name];
};
};
/** @private Sets the value of the property <i>name</i> to <i>v</i>. */
pv.Mark.prototype.propertyValue = function(name, v) {
var properties = this.$properties, p = {name: name, id: pv.id(), value: v};
for (var i = 0; i < properties.length; i++) {
if (properties[i].name == name) {
properties.splice(i, 1);
break;
}
}
properties.push(p);
return p;
};
/* Define all global properties. */
pv.Mark.prototype
.property("data")
.property("visible", Boolean)
.property("left", Number)
.property("right", Number)
.property("top", Number)
.property("bottom", Number)
.property("cursor", String)
.property("title", String)
.property("reverse", Boolean)
.property("antialias", Boolean)
.property("events", String);
/**
* The mark type; a lower camelCase name. The type name controls rendering
* behavior, and unless the rendering engine is extended, must be one of the
* built-in concrete mark types: area, bar, dot, image, label, line, panel,
* rule, or wedge.
*
* @type string
* @name pv.Mark.prototype.type
*/
/**
* The mark prototype, possibly undefined, from which to inherit property
* functions. The mark prototype is not necessarily of the same type as this
* mark. Any properties defined on this mark will override properties inherited
* either from the prototype or from the type-specific defaults.
*
* @type pv.Mark
* @name pv.Mark.prototype.proto
*/
/**
* The mark anchor target, possibly undefined.
*
* @type pv.Mark
* @name pv.Mark.prototype.target
*/
/**
* The enclosing parent panel. The parent panel is generally undefined only for
* the root panel; however, it is possible to create "offscreen" marks that are
* used only for inheritance purposes.
*
* @type pv.Panel
* @name pv.Mark.prototype.parent
*/
/**
* The child index. -1 if the enclosing parent panel is null; otherwise, the
* zero-based index of this mark into the parent panel's <tt>children</tt> array.
*
* @type number
*/
pv.Mark.prototype.childIndex = -1;
/**
* The mark index. The value of this field depends on which instance (i.e.,
* which element of the data array) is currently being evaluated. During the
* build phase, the index is incremented over each datum; when handling events,
* the index is set to the instance that triggered the event.
*
* @type number
*/
pv.Mark.prototype.index = -1;
/**
* The current scale factor, based on any enclosing transforms. The current
* scale can be used to create scale-independent graphics. For example, to
* define a dot that has a radius of 10 irrespective of any zooming, say:
*
* <pre>dot.radius(function() 10 / this.scale)</pre>
*
* Note that the stroke width and font size are defined irrespective of scale
* (i.e., in screen space) already. Also note that when a transform is applied
* to a panel, the scale affects only the child marks, not the panel itself.
*
* @type number
* @see pv.Panel#transform
*/
pv.Mark.prototype.scale = 1;
/**
* @private The scene graph. The scene graph is an array of objects; each object
* (or "node") corresponds to an instance of this mark and an element in the
* data array. The scene graph can be traversed to lookup previously-evaluated
* properties.
*
* @name pv.Mark.prototype.scene
*/
/**
* The root parent panel. This may be undefined for "offscreen" marks that are
* created for inheritance purposes only.
*
* @type pv.Panel
* @name pv.Mark.prototype.root
*/
/**
* The data property; an array of objects. The size of the array determines the
* number of marks that will be instantiated; each element in the array will be
* passed to property functions to compute the property values. Typically, the
* data property is specified as a constant array, such as
*
* <pre>m.data([1, 2, 3, 4, 5]);</pre>
*
* However, it is perfectly acceptable to define the data property as a
* function. This function might compute the data dynamically, allowing
* different data to be used per enclosing panel. For instance, in the stacked
* area graph example (see {@link #scene}), the data function on the area mark
* dereferences each series.
*
* @type array
* @name pv.Mark.prototype.data
*/
/**
* The visible property; a boolean determining whether or not the mark instance
* is visible. If a mark instance is not visible, its other properties will not
* be evaluated. Similarly, for panels no child marks will be rendered.
*
* @type boolean
* @name pv.Mark.prototype.visible
*/
/**
* The left margin; the distance, in pixels, between the left edge of the
* enclosing panel and the left edge of this mark. Note that in some cases this
* property may be redundant with the right property, or with the conjunction of
* right and width.
*
* @type number
* @name pv.Mark.prototype.left
*/
/**
* The right margin; the distance, in pixels, between the right edge of the
* enclosing panel and the right edge of this mark. Note that in some cases this
* property may be redundant with the left property, or with the conjunction of
* left and width.
*
* @type number
* @name pv.Mark.prototype.right
*/
/**
* The top margin; the distance, in pixels, between the top edge of the
* enclosing panel and the top edge of this mark. Note that in some cases this
* property may be redundant with the bottom property, or with the conjunction
* of bottom and height.
*
* @type number
* @name pv.Mark.prototype.top
*/
/**
* The bottom margin; the distance, in pixels, between the bottom edge of the
* enclosing panel and the bottom edge of this mark. Note that in some cases
* this property may be redundant with the top property, or with the conjunction
* of top and height.
*
* @type number
* @name pv.Mark.prototype.bottom
*/
/**
* The cursor property; corresponds to the CSS cursor property. This is
* typically used in conjunction with event handlers to indicate interactivity.
*
* @type string
* @name pv.Mark.prototype.cursor
* @see <a href="http://www.w3.org/TR/CSS2/ui.html#propdef-cursor">CSS2 cursor</a>
*/
/**
* The title property; corresponds to the HTML/SVG title property, allowing the
* general of simple plain text tooltips.
*
* @type string
* @name pv.Mark.prototype.title
*/
/**
* The events property; corresponds to the SVG pointer-events property,
* specifying how the mark should participate in mouse events. The default value
* is "painted". Supported values are:
*
* <p>"painted": The given mark may receive events when the mouse is over a
* "painted" area. The painted areas are the interior (i.e., fill) of the mark
* if a 'fillStyle' is specified, and the perimeter (i.e., stroke) of the mark
* if a 'strokeStyle' is specified.
*
* <p>"all": The given mark may receive events when the mouse is over either the
* interior (i.e., fill) or the perimeter (i.e., stroke) of the mark, regardless
* of the specified fillStyle and strokeStyle.
*
* <p>"none": The given mark may not receive events.
*
* @type string
* @name pv.Mark.prototype.events
*/
/**
* The reverse property; a boolean determining whether marks are ordered from
* front-to-back or back-to-front. SVG does not support explicit z-ordering;
* shapes are rendered in the order they appear. Thus, by default, marks are
* rendered in data order. Setting the reverse property to false reverses the
* order in which they are rendered; however, the properties are still evaluated
* (i.e., built) in forward order.
*
* @type boolean
* @name pv.Mark.prototype.reverse
*/
/**
* Default properties for all mark types. By default, the data array is the
* parent data as a single-element array; if the data property is not specified,
* this causes each mark to be instantiated as a singleton with the parents
* datum. The visible property is true by default, and the reverse property is
* false.
*
* @type pv.Mark
*/
pv.Mark.prototype.defaults = new pv.Mark()
.data(function(d) { return [d]; })
.visible(true)
.antialias(true)
.events("painted");
/**
* Sets the prototype of this mark to the specified mark. Any properties not
* defined on this mark may be inherited from the specified prototype mark, or
* its prototype, and so on. The prototype mark need not be the same type of
* mark as this mark. (Note that for inheritance to be useful, properties with
* the same name on different mark types should have equivalent meaning.)
*
* @param {pv.Mark} proto the new prototype.
* @returns {pv.Mark} this mark.
* @see #add
*/
pv.Mark.prototype.extend = function(proto) {
this.proto = proto;
this.target = proto.target;
return this;
};
/**
* Adds a new mark of the specified type to the enclosing parent panel, whilst
* simultaneously setting the prototype of the new mark to be this mark.
*
* @param {function} type the type of mark to add; a constructor, such as
* <tt>pv.Bar</tt>.
* @returns {pv.Mark} the new mark.
* @see #extend
*/
pv.Mark.prototype.add = function(type) {
return this.parent.add(type).extend(this);
};
/**
* Defines a custom property on this mark. Custom properties are currently
* fixed, in that they are initialized once per mark set (i.e., per parent panel
* instance). Custom properties can be used to store local state for the mark,
* such as data needed by other properties (e.g., a custom scale) or interaction
* state.
*
* <p>WARNING We plan on changing this feature in a future release to define
* standard properties, as opposed to <i>fixed</i> properties that behave
* idiosyncratically within event handlers. Furthermore, we recommend storing
* state in an external data structure, rather than tying it to the
* visualization specification as with defs.
*
* @param {string} name the name of the local variable.
* @param {function} [v] an optional initializer; may be a constant or a
* function.
*/
pv.Mark.prototype.def = function(name, v) {
this.propertyMethod(name, true);
return this[name](arguments.length > 1 ? v : null);
};
/**
* Returns an anchor with the specified name. All marks support the five
* standard anchor names:<ul>
*
* <li>top
* <li>left
* <li>center
* <li>bottom
* <li>right
*
* </ul>In addition to positioning properties (left, right, top bottom), the
* anchors support text rendering properties (text-align, text-baseline). Text is
* rendered to appear inside the mark by default.
*
* <p>To facilitate stacking, anchors are defined in terms of their opposite
* edge. For example, the top anchor defines the bottom property, such that the
* mark extends upwards; the bottom anchor instead defines the top property,
* such that the mark extends downwards. See also {@link pv.Layout.Stack}.
*
* <p>While anchor names are typically constants, the anchor name is a true
* property, which means you can specify a function to compute the anchor name
* dynamically. See the {@link pv.Anchor#name} property for details.
*
* @param {string} name the anchor name; either a string or a property function.
* @returns {pv.Anchor} the new anchor.
*/
pv.Mark.prototype.anchor = function(name) {
if (!name) name = "center"; // default anchor name
return new pv.Anchor(this)
.name(name)
.data(function() {
return this.scene.target.map(function(s) { return s.data; });
})
.visible(function() {
return this.scene.target[this.index].visible;
})
.left(function() {
var s = this.scene.target[this.index], w = s.width || 0;
switch (this.name()) {
case "bottom":
case "top":
case "center": return s.left + w / 2;
case "left": return null;
}
return s.left + w;
})
.top(function() {
var s = this.scene.target[this.index], h = s.height || 0;
switch (this.name()) {
case "left":
case "right":
case "center": return s.top + h / 2;
case "top": return null;
}
return s.top + h;
})
.right(function() {
var s = this.scene.target[this.index];
return this.name() == "left" ? s.right + (s.width || 0) : null;
})
.bottom(function() {
var s = this.scene.target[this.index];
return this.name() == "top" ? s.bottom + (s.height || 0) : null;
})
.textAlign(function() {
switch (this.name()) {
case "bottom":
case "top":
case "center": return "center";
case "right": return "right";
}
return "left";
})
.textBaseline(function() {
switch (this.name()) {
case "right":
case "left":
case "center": return "middle";
case "top": return "top";
}
return "bottom";
});
};
/** @deprecated Replaced by {@link #target}. */
pv.Mark.prototype.anchorTarget = function() {
return this.target;
};
/**
* Alias for setting the left, right, top and bottom properties simultaneously.
*
* @see #left
* @see #right
* @see #top
* @see #bottom
* @returns {pv.Mark} this.
*/
pv.Mark.prototype.margin = function(n) {
return this.left(n).right(n).top(n).bottom(n);
};
/**
* @private Returns the current instance of this mark in the scene graph. This
* is typically equivalent to <tt>this.scene[this.index]</tt>, however if the
* scene or index is unset, the default instance of the mark is returned. If no
* default is set, the default is the last instance. Similarly, if the scene or
* index of the parent panel is unset, the default instance of this mark in the
* last instance of the enclosing panel is returned, and so on.
*
* @returns a node in the scene graph.
*/
pv.Mark.prototype.instance = function(defaultIndex) {
var scene = this.scene || this.parent.instance(-1).children[this.childIndex],
index = !arguments.length || this.hasOwnProperty("index") ? this.index : defaultIndex;
return scene[index < 0 ? scene.length - 1 : index];
};
/**
* @private Find the instances of this mark that match source.
*
* @see pv.Anchor
*/
pv.Mark.prototype.instances = function(source) {
var mark = this, index = [], scene;
/* Mirrored descent. */
while (!(scene = mark.scene)) {
source = source.parent;
index.push({index: source.index, childIndex: mark.childIndex});
mark = mark.parent;
}
while (index.length) {
var i = index.pop();
scene = scene[i.index].children[i.childIndex];
}
/*
* When the anchor target is also an ancestor, as in the case of adding
* to a panel anchor, only generate one instance per panel. Also, set
* the margins to zero, since they are offset by the enclosing panel.
*/
if (this.hasOwnProperty("index")) {
var s = pv.extend(scene[this.index]);
s.right = s.top = s.left = s.bottom = 0;
return [s];
}
return scene;
};
/**
* @private Returns the first instance of this mark in the scene graph. This
* method can only be called when the mark is bound to the scene graph (for
* example, from an event handler, or within a property function).
*
* @returns a node in the scene graph.
*/
pv.Mark.prototype.first = function() {
return this.scene[0];
};
/**
* @private Returns the last instance of this mark in the scene graph. This
* method can only be called when the mark is bound to the scene graph (for
* example, from an event handler, or within a property function). In addition,
* note that mark instances are built sequentially, so the last instance of this
* mark may not yet be constructed.
*
* @returns a node in the scene graph.
*/
pv.Mark.prototype.last = function() {
return this.scene[this.scene.length - 1];
};
/**
* @private Returns the previous instance of this mark in the scene graph, or
* null if this is the first instance.
*
* @returns a node in the scene graph, or null.
*/
pv.Mark.prototype.sibling = function() {
return (this.index == 0) ? null : this.scene[this.index - 1];
};
/**
* @private Returns the current instance in the scene graph of this mark, in the
* previous instance of the enclosing parent panel. May return null if this
* instance could not be found.
*
* @returns a node in the scene graph, or null.
*/
pv.Mark.prototype.cousin = function() {
var p = this.parent, s = p && p.sibling();
return (s && s.children) ? s.children[this.childIndex][this.index] : null;
};
/**
* Renders this mark, including recursively rendering all child marks if this is
* a panel. This method finds all instances of this mark and renders them. This
* method descends recursively to the level of the mark to be rendered, finding
* all visible instances of the mark. After the marks are rendered, the scene
* and index attributes are removed from the mark to restore them to a clean
* state.
*
* <p>If an enclosing panel has an index property set (as is the case inside in
* an event handler), then only instances of this mark inside the given instance
* of the panel will be rendered; otherwise, all visible instances of the mark
* will be rendered.
*/
pv.Mark.prototype.render = function() {
var parent = this.parent,
stack = pv.Mark.stack;
/* For the first render, take it from the top. */
if (parent && !this.root.scene) {
this.root.render();
return;
}
/* Record the path to this mark. */
var indexes = [];
for (var mark = this; mark.parent; mark = mark.parent) {
indexes.unshift(mark.childIndex);
}
/** @private */
function render(mark, depth, scale) {
mark.scale = scale;
if (depth < indexes.length) {
stack.unshift(null);
if (mark.hasOwnProperty("index")) {
renderInstance(mark, depth, scale);
} else {
for (var i = 0, n = mark.scene.length; i < n; i++) {
mark.index = i;
renderInstance(mark, depth, scale);
}
delete mark.index;
}
stack.shift();
} else {
mark.build();
/*
* In the update phase, the scene is rendered by creating and updating
* elements and attributes in the SVG image. No properties are evaluated
* during the update phase; instead the values computed previously in the
* build phase are simply translated into SVG. The update phase is
* decoupled (see pv.Scene) to allow different rendering engines.
*/
pv.Scene.scale = scale;
pv.Scene.updateAll(mark.scene);
}
delete mark.scale;
}
/**
* @private Recursively renders the current instance of the specified mark.
* This is slightly tricky because `index` and `scene` properties may or may
* not already be set; if they are set, it means we are rendering only a
* specific instance; if they are unset, we are rendering all instances.
* Furthermore, we must preserve the original context of these properties when
* rendering completes.
*
* <p>Another tricky aspect is that the `scene` attribute should be set for
* any preceding children, so as to allow property chaining. This is
* consistent with first-pass rendering.
*/
function renderInstance(mark, depth, scale) {
var s = mark.scene[mark.index], i;
if (s.visible) {
var childIndex = indexes[depth],
child = mark.children[childIndex];
/* Set preceding child scenes. */
for (i = 0; i < childIndex; i++) {
mark.children[i].scene = s.children[i];
}
/* Set current child scene, if necessary. */
stack[0] = s.data;
if (child.scene) {
render(child, depth + 1, scale * s.transform.k);
} else {
child.scene = s.children[childIndex];
render(child, depth + 1, scale * s.transform.k);
delete child.scene;
}
/* Clear preceding child scenes. */
for (i = 0; i < childIndex; i++) {
delete mark.children[i].scene;
}
}
}
/* Bind this mark's property definitions. */
this.bind();
/* The render context is the first ancestor with an explicit index. */
while (parent && !parent.hasOwnProperty("index")) parent = parent.parent;
/* Recursively render all instances of this mark. */
this.context(
parent ? parent.scene : undefined,
parent ? parent.index : -1,
function() { render(this.root, 0, 1); });
};
/** @private Stores the current data stack. */
pv.Mark.stack = [];
/**
* @private In the bind phase, inherited property definitions are cached so they
* do not need to be queried during build.
*/
pv.Mark.prototype.bind = function() {
var seen = {}, types = [[], [], [], []], data, visible;
/** Scans the proto chain for the specified mark. */
function bind(mark) {
do {
var properties = mark.$properties;
for (var i = properties.length - 1; i >= 0 ; i--) {
var p = properties[i];
if (!(p.name in seen)) {
seen[p.name] = p;
switch (p.name) {
case "data": data = p; break;
case "visible": visible = p; break;
default: types[p.type].push(p); break;
}
}
}
} while (mark = mark.proto);
}
/* Scan the proto chain for all defined properties. */
bind(this);
bind(this.defaults);
types[1].reverse();
types[3].reverse();
/* Any undefined properties are null. */
var mark = this;
do for (var name in mark.properties) {
if (!(name in seen)) {
types[2].push(seen[name] = {name: name, type: 2, value: null});
}
} while (mark = mark.proto);
/* Define setter-getter for inherited defs. */
var defs = types[0].concat(types[1]);
for (var i = 0; i < defs.length; i++) {
this.propertyMethod(defs[i].name, true);
}
/* Setup binds to evaluate constants before functions. */
this.binds = {
properties: seen,
data: data,
defs: defs,
required: [visible],
optional: pv.blend(types)
};
};
/**
* @private Evaluates properties and computes implied properties. Properties are
* stored in the {@link #scene} array for each instance of this mark.
*
* <p>As marks are built recursively, the {@link #index} property is updated to
* match the current index into the data array for each mark. Note that the
* index property is only set for the mark currently being built and its
* enclosing parent panels. The index property for other marks is unset, but is
* inherited from the global <tt>Mark</tt> class prototype. This allows mark
* properties to refer to properties on other marks <i>in the same panel</i>
* conveniently; however, in general it is better to reference mark instances
* specifically through the scene graph rather than depending on the magical
* behavior of {@link #index}.
*
* <p>The root scene array has a special property, <tt>data</tt>, which stores
* the current data stack. The first element in this stack is the current datum,
* followed by the datum of the enclosing parent panel, and so on. The data
* stack should not be accessed directly; instead, property functions are passed
* the current data stack as arguments.
*
* <p>The evaluation of the <tt>data</tt> and <tt>visible</tt> properties is
* special. The <tt>data</tt> property is evaluated first; unlike the other
* properties, the data stack is from the parent panel, rather than the current
* mark, since the data is not defined until the data property is evaluated.
* The <tt>visisble</tt> property is subsequently evaluated for each instance;
* only if true will the {@link #buildInstance} method be called, evaluating
* other properties and recursively building the scene graph.
*
* <p>If this mark is being re-built, any old instances of this mark that no
* longer exist (because the new data array contains fewer elements) will be
* cleared using {@link #clearInstance}.
*
* @param parent the instance of the parent panel from the scene graph.
*/
pv.Mark.prototype.build = function() {
var scene = this.scene, stack = pv.Mark.stack;
if (!scene) {
scene = this.scene = [];
scene.mark = this;
scene.type = this.type;
scene.childIndex = this.childIndex;
if (this.parent) {
scene.parent = this.parent.scene;
scene.parentIndex = this.parent.index;
}
}
/* Resolve anchor target. */
if (this.target) scene.target = this.target.instances(scene);
/* Evaluate defs. */
if (this.binds.defs.length) {
var defs = scene.defs;
if (!defs) scene.defs = defs = {};
for (var i = 0; i < this.binds.defs.length; i++) {
var p = this.binds.defs[i], d = defs[p.name];
if (!d || (p.id > d.id)) {
defs[p.name] = {
id: 0, // this def will be re-evaluated on next build
value: (p.type & 1) ? p.value.apply(this, stack) : p.value
};
}
}
}
/* Evaluate special data property. */
var data = this.binds.data;
data = data.type & 1 ? data.value.apply(this, stack) : data.value;
/* Create, update and delete scene nodes. */
stack.unshift(null);
scene.length = data.length;
for (var i = 0; i < data.length; i++) {
pv.Mark.prototype.index = this.index = i;
var s = scene[i];
if (!s) scene[i] = s = {};
s.data = stack[0] = data[i];
this.buildInstance(s);
}
pv.Mark.prototype.index = -1;
delete this.index;
stack.shift();
return this;
};
/**
* @private Evaluates the specified array of properties for the specified
* instance <tt>s</tt> in the scene graph.
*
* @param s a node in the scene graph; the instance of the mark to build.
* @param properties an array of properties.
*/
pv.Mark.prototype.buildProperties = function(s, properties) {
for (var i = 0, n = properties.length; i < n; i++) {
var p = properties[i], v = p.value; // assume case 2 (constant)
switch (p.type) {
case 0:
case 1: v = this.scene.defs[p.name].value; break;
case 3: v = v.apply(this, pv.Mark.stack); break;
}
s[p.name] = v;
}
};
/**
* @private Evaluates all of the properties for this mark for the specified
* instance <tt>s</tt> in the scene graph. The set of properties to evaluate is
* retrieved from the {@link #properties} array for this mark type (see {@link
* #type}). After these properties are evaluated, any <b>implied</b> properties
* may be computed by the mark and set on the scene graph; see
* {@link #buildImplied}.
*
* <p>For panels, this method recursively builds the scene graph for all child
* marks as well. In general, this method should not need to be overridden by
* concrete mark types.
*
* @param s a node in the scene graph; the instance of the mark to build.
*/
pv.Mark.prototype.buildInstance = function(s) {
this.buildProperties(s, this.binds.required);
if (s.visible) {
this.buildProperties(s, this.binds.optional);
this.buildImplied(s);
}
};
/**
* @private Computes the implied properties for this mark for the specified
* instance <tt>s</tt> in the scene graph. Implied properties are those with
* dependencies on multiple other properties; for example, the width property
* may be implied if the left and right properties are set. This method can be
* overridden by concrete mark types to define new implied properties, if
* necessary.
*
* @param s a node in the scene graph; the instance of the mark to build.
*/
pv.Mark.prototype.buildImplied = function(s) {
var l = s.left;
var r = s.right;
var t = s.top;
var b = s.bottom;
/* Assume width and height are zero if not supported by this mark type. */
var p = this.properties;
var w = p.width ? s.width : 0;
var h = p.height ? s.height : 0;
/* Compute implied width, right and left. */
var width = this.parent ? this.parent.width() : (w + l + r);
if (w == null) {
w = width - (r = r || 0) - (l = l || 0);
} else if (r == null) {
if (l == null) {
l = r = (width - w) / 2;
} else {
r = width - w - (l = l || 0);
}
} else if (l == null) {
l = width - w - r;
}
/* Compute implied height, bottom and top. */
var height = this.parent ? this.parent.height() : (h + t + b);
if (h == null) {
h = height - (t = t || 0) - (b = b || 0);
} else if (b == null) {
if (t == null) {
b = t = (height - h) / 2;
} else {
b = height - h - (t = t || 0);
}
} else if (t == null) {
t = height - h - b;
}
s.left = l;
s.right = r;
s.top = t;
s.bottom = b;
/* Only set width and height if they are supported by this mark type. */
if (p.width) s.width = w;
if (p.height) s.height = h;
/* Set any null colors to pv.Color.transparent. */
if (p.textStyle && !s.textStyle) s.textStyle = pv.Color.transparent;
if (p.fillStyle && !s.fillStyle) s.fillStyle = pv.Color.transparent;
if (p.strokeStyle && !s.strokeStyle) s.strokeStyle = pv.Color.transparent;
};
/**
* Returns the current location of the mouse (cursor) relative to this mark's
* parent. The <i>x</i> coordinate corresponds to the left margin, while the
* <i>y</i> coordinate corresponds to the top margin.
*
* @returns {pv.Vector} the mouse location.
*/
pv.Mark.prototype.mouse = function() {
/* Compute xy-coordinates relative to the panel. */
var x = pv.event.pageX || 0,
y = pv.event.pageY || 0,
n = this.root.canvas();
do {
x -= n.offsetLeft;
y -= n.offsetTop;
} while (n = n.offsetParent);
/* Compute the inverse transform of all enclosing panels. */
var t = pv.Transform.identity,
p = this.properties.transform ? this : this.parent,
pz = [];
do { pz.push(p); } while (p = p.parent);
while (p = pz.pop()) t = t.translate(p.left(), p.top()).times(p.transform());
t = t.invert();
return pv.vector(x * t.k + t.x, y * t.k + t.y);
};
/**
* Registers an event handler for the specified event type with this mark. When
* an event of the specified type is triggered, the specified handler will be
* invoked. The handler is invoked in a similar method to property functions:
* the context is <tt>this</tt> mark instance, and the arguments are the full
* data stack. Event handlers can use property methods to manipulate the display
* properties of the mark:
*
* <pre>m.event("click", function() this.fillStyle("red"));</pre>
*
* Alternatively, the external data can be manipulated and the visualization
* redrawn:
*
* <pre>m.event("click", function(d) {
* data = all.filter(function(k) k.name == d);
* vis.render();
* });</pre>
*
* The return value of the event handler determines which mark gets re-rendered.
* Use defs ({@link #def}) to set temporary state from event handlers.
*
* <p>The complete set of event types is defined by SVG; see the reference
* below. The set of supported event types is:<ul>
*
* <li>click
* <li>mousedown
* <li>mouseup
* <li>mouseover
* <li>mousemove
* <li>mouseout
*
* </ul>Since Protovis does not specify any concept of focus, it does not
* support key events; these should be handled outside the visualization using
* standard JavaScript. In the future, support for interaction may be extended
* to support additional event types, particularly those most relevant to
* interactive visualization, such as selection.
*
* <p>TODO In the current implementation, event handlers are not inherited from
* prototype marks. They must be defined explicitly on each interactive mark. In
* addition, only one event handler for a given event type can be defined; when
* specifying multiple event handlers for the same type, only the last one will
* be used.
*
* @see <a href="http://www.w3.org/TR/SVGTiny12/interact.html#SVGEvents">SVG events</a>
* @param {string} type the event type.
* @param {function} handler the event handler.
* @returns {pv.Mark} this.
*/
pv.Mark.prototype.event = function(type, handler) {
this.$handlers[type] = pv.functor(handler);
return this;
};
/** @private Evaluates the function <i>f</i> with the specified context. */
pv.Mark.prototype.context = function(scene, index, f) {
var proto = pv.Mark.prototype,
stack = pv.Mark.stack,
oscene = pv.Mark.scene,
oindex = proto.index;
/** @private Sets the context. */
function apply(scene, index) {
pv.Mark.scene = scene;
proto.index = index;
if (!scene) return;
var that = scene.mark,
mark = that,
ancestors = [];
/* Set ancestors' scene and index; populate data stack. */
do {
ancestors.push(mark);
stack.push(scene[index].data);
mark.index = index;
mark.scene = scene;
index = scene.parentIndex;
scene = scene.parent;
} while (mark = mark.parent);
/* Set ancestors' scale; requires top-down. */
for (var i = ancestors.length - 1, k = 1; i > 0; i--) {
mark = ancestors[i];
mark.scale = k;
k *= mark.scene[mark.index].transform.k;
}
/* Set children's scene and scale. */
if (that.children) for (var i = 0, n = that.children.length; i < n; i++) {
mark = that.children[i];
mark.scene = that.scene[that.index].children[i];
mark.scale = k;
}
}
/** @private Clears the context. */
function clear(scene, index) {
if (!scene) return;
var that = scene.mark,
mark;
/* Reset children. */
if (that.children) for (var i = 0, n = that.children.length; i < n; i++) {
mark = that.children[i];
delete mark.scene;
delete mark.scale;
}
/* Reset ancestors. */
mark = that;
do {
stack.pop();
if (mark.parent) {
delete mark.scene;
delete mark.scale;
}
delete mark.index;
} while (mark = mark.parent);
}
/* Context switch, invoke the function, then switch back. */
clear(oscene, oindex);
apply(scene, index);
try {
f.apply(this, stack);
} finally {
clear(scene, index);
apply(oscene, oindex);
}
};
/** @private Execute the event listener, then re-render. */
pv.Mark.dispatch = function(type, scene, index) {
var m = scene.mark, p = scene.parent, l = m.$handlers[type];
if (!l) return p && pv.Mark.dispatch(type, p, scene.parentIndex);
m.context(scene, index, function() {
m = l.apply(m, pv.Mark.stack);
if (m && m.render) m.render();
});
return true;
};
/**
* Constructs a new mark anchor with default properties.
*
* @class Represents an anchor on a given mark. An anchor is itself a mark, but
* without a visual representation. It serves only to provide useful default
* properties that can be inherited by other marks. Each type of mark can define
* any number of named anchors for convenience. If the concrete mark type does
* not define an anchor implementation specifically, one will be inherited from
* the mark's parent class.
*
* <p>For example, the bar mark provides anchors for its four sides: left,
* right, top and bottom. Adding a label to the top anchor of a bar,
*
* <pre>bar.anchor("top").add(pv.Label);</pre>
*
* will render a text label on the top edge of the bar; the top anchor defines
* the appropriate position properties (top and left), as well as text-rendering
* properties for convenience (textAlign and textBaseline).
*
* <p>Note that anchors do not <i>inherit</i> from their targets; the positional
* properties are copied from the scene graph, which guarantees that the anchors
* are positioned correctly, even if the positional properties are not defined
* deterministically. (In addition, it also improves performance by avoiding
* re-evaluating expensive properties.) If you want the anchor to inherit from
* the target, use {@link pv.Mark#extend} before adding. For example:
*
* <pre>bar.anchor("top").extend(bar).add(pv.Label);</pre>
*
* The anchor defines it's own positional properties, but other properties (such
* as the title property, say) can be inherited using the above idiom. Also note
* that you can override positional properties in the anchor for custom
* behavior.
*
* @extends pv.Mark
* @param {pv.Mark} target the anchor target.
*/
pv.Anchor = function(target) {
pv.Mark.call(this);
this.target = target;
this.parent = target.parent;
};
pv.Anchor.prototype = pv.extend(pv.Mark)
.property("name", String);
/**
* The anchor name. The set of supported anchor names is dependent on the
* concrete mark type; see the mark type for details. For example, bars support
* left, right, top and bottom anchors.
*
* <p>While anchor names are typically constants, the anchor name is a true
* property, which means you can specify a function to compute the anchor name
* dynamically. For instance, if you wanted to alternate top and bottom anchors,
* saying
*
* <pre>m.anchor(function() (this.index % 2) ? "top" : "bottom").add(pv.Dot);</pre>
*
* would have the desired effect.
*
* @type string
* @name pv.Anchor.prototype.name
*/
/**
* Sets the prototype of this anchor to the specified mark. Any properties not
* defined on this mark may be inherited from the specified prototype mark, or
* its prototype, and so on. The prototype mark need not be the same type of
* mark as this mark. (Note that for inheritance to be useful, properties with
* the same name on different mark types should have equivalent meaning.)
*
* <p>This method differs slightly from the normal mark behavior in that the
* anchor's target is preserved.
*
* @param {pv.Mark} proto the new prototype.
* @returns {pv.Anchor} this anchor.
* @see pv.Mark#add
*/
pv.Anchor.prototype.extend = function(proto) {
this.proto = proto;
return this;
};
/**
* Constructs a new area mark with default properties. Areas are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents an area mark: the solid area between two series of
* connected line segments. Unsurprisingly, areas are used most frequently for
* area charts.
*
* <p>Just as a line represents a polyline, the <tt>Area</tt> mark type
* represents a <i>polygon</i>. However, an area is not an arbitrary polygon;
* vertices are paired either horizontally or vertically into parallel
* <i>spans</i>, and each span corresponds to an associated datum. Either the
* width or the height must be specified, but not both; this determines whether
* the area is horizontally-oriented or vertically-oriented. Like lines, areas
* can be stroked and filled with arbitrary colors.
*
* <p>See also the <a href="../../api/Area.html">Area guide</a>.
*
* @extends pv.Mark
*/
pv.Area = function() {
pv.Mark.call(this);
};
pv.Area.prototype = pv.extend(pv.Mark)
.property("width", Number)
.property("height", Number)
.property("lineWidth", Number)
.property("strokeStyle", pv.color)
.property("fillStyle", pv.color)
.property("segmented", Boolean)
.property("interpolate", String)
.property("tension", Number);
pv.Area.prototype.type = "area";
/**
* The width of a given span, in pixels; used for horizontal spans. If the width
* is specified, the height property should be 0 (the default). Either the top
* or bottom property should be used to space the spans vertically, typically as
* a multiple of the index.
*
* @type number
* @name pv.Area.prototype.width
*/
/**
* The height of a given span, in pixels; used for vertical spans. If the height
* is specified, the width property should be 0 (the default). Either the left
* or right property should be used to space the spans horizontally, typically
* as a multiple of the index.
*
* @type number
* @name pv.Area.prototype.height
*/
/**
* The width of stroked lines, in pixels; used in conjunction with
* <tt>strokeStyle</tt> to stroke the perimeter of the area. Unlike the
* {@link Line} mark type, the entire perimeter is stroked, rather than just one
* edge. The default value of this property is 1.5, but since the default stroke
* style is null, area marks are not stroked by default.
*
* <p>This property is <i>fixed</i> for non-segmented areas. See
* {@link pv.Mark}.
*
* @type number
* @name pv.Area.prototype.lineWidth
*/
/**
* The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
* stroke the perimeter of the area. Unlike the {@link Line} mark type, the
* entire perimeter is stroked, rather than just one edge. The default value of
* this property is null, meaning areas are not stroked by default.
*
* <p>This property is <i>fixed</i> for non-segmented areas. See
* {@link pv.Mark}.
*
* @type string
* @name pv.Area.prototype.strokeStyle
* @see pv.color
*/
/**
* The area fill style; if non-null, the interior of the polygon forming the
* area is filled with the specified color. The default value of this property
* is a categorical color.
*
* <p>This property is <i>fixed</i> for non-segmented areas. See
* {@link pv.Mark}.
*
* @type string
* @name pv.Area.prototype.fillStyle
* @see pv.color
*/
/**
* Whether the area is segmented; whether variations in fill style, stroke
* style, and the other properties are treated as fixed. Rendering segmented
* areas is noticeably slower than non-segmented areas.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type boolean
* @name pv.Area.prototype.segmented
*/
/**
* How to interpolate between values. Linear interpolation ("linear") is the
* default, producing a straight line between points. For piecewise constant
* functions (i.e., step functions), either "step-before" or "step-after" can be
* specified. To draw open uniform b-splines, specify "basis". To draw cardinal
* splines, specify "cardinal"; see also {@link #tension}.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type string
* @name pv.Area.prototype.interpolate
*/
/**
* The tension of cardinal splines; used in conjunction with
* interpolate("cardinal"). A value between 0 and 1 draws cardinal splines with
* the given tension. In some sense, the tension can be interpreted as the
* "length" of the tangent; a tension of 1 will yield all zero tangents (i.e.,
* linear interpolation), and a tension of 0 yields a Catmull-Rom spline. The
* default value is 0.7.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type number
* @name pv.Area.prototype.tension
*/
/**
* Default properties for areas. By default, there is no stroke and the fill
* style is a categorical color.
*
* @type pv.Area
*/
pv.Area.prototype.defaults = new pv.Area()
.extend(pv.Mark.prototype.defaults)
.lineWidth(1.5)
.fillStyle(pv.Colors.category20().by(pv.parent))
.interpolate("linear")
.tension(.7);
/** @private Sets width and height to zero if null. */
pv.Area.prototype.buildImplied = function(s) {
if (s.height == null) s.height = 0;
if (s.width == null) s.width = 0;
pv.Mark.prototype.buildImplied.call(this, s);
};
/** @private Records which properties may be fixed. */
pv.Area.fixed = {
lineWidth: 1,
lineJoin: 1,
strokeStyle: 1,
fillStyle: 1,
segmented: 1,
interpolate: 1,
tension: 1
};
/**
* @private Make segmented required, such that this fixed property is always
* evaluated, even if the first segment is not visible. Also cache which
* properties are normally fixed.
*/
pv.Area.prototype.bind = function() {
pv.Mark.prototype.bind.call(this);
var binds = this.binds,
required = binds.required,
optional = binds.optional;
for (var i = 0, n = optional.length; i < n; i++) {
var p = optional[i];
p.fixed = p.name in pv.Area.fixed;
if (p.name == "segmented") {
required.push(p);
optional.splice(i, 1);
i--;
n--;
}
}
/* Cache the original arrays so they can be restored on build. */
this.binds.$required = required;
this.binds.$optional = optional;
};
/**
* @private Override the default build behavior such that fixed properties are
* determined dynamically, based on the value of the (always) fixed segmented
* property. Any fixed properties are only evaluated on the first instance,
* although their values are propagated to subsequent instances, so that they
* are available for property chaining and the like.
*/
pv.Area.prototype.buildInstance = function(s) {
var binds = this.binds;
/* Handle fixed properties on secondary instances. */
if (this.index) {
var fixed = binds.fixed;
/* Determine which properties are fixed. */
if (!fixed) {
fixed = binds.fixed = [];
function f(p) { return !p.fixed || (fixed.push(p), false); }
binds.required = binds.required.filter(f);
if (!this.scene[0].segmented) binds.optional = binds.optional.filter(f);
}
/* Copy fixed property values from the first instance. */
for (var i = 0, n = fixed.length; i < n; i++) {
var p = fixed[i].name;
s[p] = this.scene[0][p];
}
}
/* Evaluate all properties on the first instance. */
else {
binds.required = binds.$required;
binds.optional = binds.$optional;
binds.fixed = null;
}
pv.Mark.prototype.buildInstance.call(this, s);
};
/**
* Constructs a new area anchor with default properties. Areas support five
* different anchors:<ul>
*
* <li>top
* <li>left
* <li>center
* <li>bottom
* <li>right
*
* </ul>In addition to positioning properties (left, right, top bottom), the
* anchors support text rendering properties (text-align, text-baseline). Text
* is rendered to appear inside the area. The area anchor also propagates the
* interpolate, eccentricity, and tension properties such that an anchored area
* or line will match positions between control points.
*
* <p>For consistency with the other mark types, the anchor positions are
* defined in terms of their opposite edge. For example, the top anchor defines
* the bottom property, such that an area added to the top anchor grows upward.
*
* @param {string} name the anchor name; either a string or a property function.
* @returns {pv.Anchor}
*/
pv.Area.prototype.anchor = function(name) {
return pv.Mark.prototype.anchor.call(this, name)
.interpolate(function() {
return this.scene.target[this.index].interpolate;
})
.eccentricity(function() {
return this.scene.target[this.index].eccentricity;
})
.tension(function() {
return this.scene.target[this.index].tension;
});
};
/**
* Constructs a new bar mark with default properties. Bars are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents a bar: an axis-aligned rectangle that can be stroked and
* filled. Bars are used for many chart types, including bar charts, histograms
* and Gantt charts. Bars can also be used as decorations, for example to draw a
* frame border around a panel; in fact, a panel is a special type (a subclass)
* of bar.
*
* <p>Bars can be positioned in several ways. Most commonly, one of the four
* corners is fixed using two margins, and then the width and height properties
* determine the extent of the bar relative to this fixed location. For example,
* using the bottom and left properties fixes the bottom-left corner; the width
* then extends to the right, while the height extends to the top. As an
* alternative to the four corners, a bar can be positioned exclusively using
* margins; this is convenient as an inset from the containing panel, for
* example. See {@link pv.Mark} for details on the prioritization of redundant
* positioning properties.
*
* <p>See also the <a href="../../api/Bar.html">Bar guide</a>.
*
* @extends pv.Mark
*/
pv.Bar = function() {
pv.Mark.call(this);
};
pv.Bar.prototype = pv.extend(pv.Mark)
.property("width", Number)
.property("height", Number)
.property("lineWidth", Number)
.property("strokeStyle", pv.color)
.property("fillStyle", pv.color);
pv.Bar.prototype.type = "bar";
/**
* The width of the bar, in pixels. If the left position is specified, the bar
* extends rightward from the left edge; if the right position is specified, the
* bar extends leftward from the right edge.
*
* @type number
* @name pv.Bar.prototype.width
*/
/**
* The height of the bar, in pixels. If the bottom position is specified, the
* bar extends upward from the bottom edge; if the top position is specified,
* the bar extends downward from the top edge.
*
* @type number
* @name pv.Bar.prototype.height
*/
/**
* The width of stroked lines, in pixels; used in conjunction with
* <tt>strokeStyle</tt> to stroke the bar's border.
*
* @type number
* @name pv.Bar.prototype.lineWidth
*/
/**
* The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
* stroke the bar's border. The default value of this property is null, meaning
* bars are not stroked by default.
*
* @type string
* @name pv.Bar.prototype.strokeStyle
* @see pv.color
*/
/**
* The bar fill style; if non-null, the interior of the bar is filled with the
* specified color. The default value of this property is a categorical color.
*
* @type string
* @name pv.Bar.prototype.fillStyle
* @see pv.color
*/
/**
* Default properties for bars. By default, there is no stroke and the fill
* style is a categorical color.
*
* @type pv.Bar
*/
pv.Bar.prototype.defaults = new pv.Bar()
.extend(pv.Mark.prototype.defaults)
.lineWidth(1.5)
.fillStyle(pv.Colors.category20().by(pv.parent));
/**
* Constructs a new dot mark with default properties. Dots are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents a dot; a dot is simply a sized glyph centered at a given
* point that can also be stroked and filled. The <tt>size</tt> property is
* proportional to the area of the rendered glyph to encourage meaningful visual
* encodings. Dots can visually encode up to eight dimensions of data, though
* this may be unwise due to integrality. See {@link pv.Mark} for details on the
* prioritization of redundant positioning properties.
*
* <p>See also the <a href="../../api/Dot.html">Dot guide</a>.
*
* @extends pv.Mark
*/
pv.Dot = function() {
pv.Mark.call(this);
};
pv.Dot.prototype = pv.extend(pv.Mark)
.property("size", Number)
.property("radius", Number)
.property("shape", String)
.property("angle", Number)
.property("lineWidth", Number)
.property("strokeStyle", pv.color)
.property("fillStyle", pv.color);
pv.Dot.prototype.type = "dot";
/**
* The size of the dot, in square pixels. Square pixels are used such that the
* area of the dot is linearly proportional to the value of the size property,
* facilitating representative encodings.
*
* @see #radius
* @type number
* @name pv.Dot.prototype.size
*/
/**
* The radius of the dot, in pixels. This is an alternative to using
* {@link #size}.
*
* @see #size
* @type number
* @name pv.Dot.prototype.radius
*/
/**
* The shape name. Several shapes are supported:<ul>
*
* <li>cross
* <li>triangle
* <li>diamond
* <li>square
* <li>circle
* <li>tick
* <li>bar
*
* </ul>These shapes can be further changed using the {@link #angle} property;
* for instance, a cross can be turned into a plus by rotating. Similarly, the
* tick, which is vertical by default, can be rotated horizontally. Note that
* some shapes (cross and tick) do not have interior areas, and thus do not
* support fill style meaningfully.
*
* <p>Note: it may be more natural to use the {@link pv.Rule} mark for
* horizontal and vertical ticks. The tick shape is only necessary if angled
* ticks are needed.
*
* @type string
* @name pv.Dot.prototype.shape
*/
/**
* The rotation angle, in radians. Used to rotate shapes, such as to turn a
* cross into a plus.
*
* @type number
* @name pv.Dot.prototype.angle
*/
/**
* The width of stroked lines, in pixels; used in conjunction with
* <tt>strokeStyle</tt> to stroke the dot's shape.
*
* @type number
* @name pv.Dot.prototype.lineWidth
*/
/**
* The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
* stroke the dot's shape. The default value of this property is a categorical
* color.
*
* @type string
* @name pv.Dot.prototype.strokeStyle
* @see pv.color
*/
/**
* The fill style; if non-null, the interior of the dot is filled with the
* specified color. The default value of this property is null, meaning dots are
* not filled by default.
*
* @type string
* @name pv.Dot.prototype.fillStyle
* @see pv.color
*/
/**
* Default properties for dots. By default, there is no fill and the stroke
* style is a categorical color. The default shape is "circle" with size 20.
*
* @type pv.Dot
*/
pv.Dot.prototype.defaults = new pv.Dot()
.extend(pv.Mark.prototype.defaults)
.size(20)
.shape("circle")
.lineWidth(1.5)
.strokeStyle(pv.Colors.category10().by(pv.parent));
/**
* Constructs a new dot anchor with default properties. Dots support five
* different anchors:<ul>
*
* <li>top
* <li>left
* <li>center
* <li>bottom
* <li>right
*
* </ul>In addition to positioning properties (left, right, top bottom), the
* anchors support text rendering properties (text-align, text-baseline). Text is
* rendered to appear outside the dot. Note that this behavior is different from
* other mark anchors, which default to rendering text <i>inside</i> the mark.
*
* <p>For consistency with the other mark types, the anchor positions are
* defined in terms of their opposite edge. For example, the top anchor defines
* the bottom property, such that a bar added to the top anchor grows upward.
*
* @param {string} name the anchor name; either a string or a property function.
* @returns {pv.Anchor}
*/
pv.Dot.prototype.anchor = function(name) {
return pv.Mark.prototype.anchor.call(this, name)
.left(function() {
var s = this.scene.target[this.index];
switch (this.name()) {
case "bottom":
case "top":
case "center": return s.left;
case "left": return null;
}
return s.left + s.radius;
})
.right(function() {
var s = this.scene.target[this.index];
return this.name() == "left" ? s.right + s.radius : null;
})
.top(function() {
var s = this.scene.target[this.index];
switch (this.name()) {
case "left":
case "right":
case "center": return s.top;
case "top": return null;
}
return s.top + s.radius;
})
.bottom(function() {
var s = this.scene.target[this.index];
return this.name() == "top" ? s.bottom + s.radius : null;
})
.textAlign(function() {
switch (this.name()) {
case "left": return "right";
case "bottom":
case "top":
case "center": return "center";
}
return "left";
})
.textBaseline(function() {
switch (this.name()) {
case "right":
case "left":
case "center": return "middle";
case "bottom": return "top";
}
return "bottom";
});
};
/** @private Sets radius based on size or vice versa. */
pv.Dot.prototype.buildImplied = function(s) {
if (s.radius == null) s.radius = Math.sqrt(s.size);
else if (s.size == null) s.size = s.radius * s.radius;
pv.Mark.prototype.buildImplied.call(this, s);
};
/**
* Constructs a new label mark with default properties. Labels are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents a text label, allowing textual annotation of other marks or
* arbitrary text within the visualization. The character data must be plain
* text (unicode), though the text can be styled using the {@link #font}
* property. If rich text is needed, external HTML elements can be overlaid on
* the canvas by hand.
*
* <p>Labels are positioned using the box model, similarly to {@link Dot}. Thus,
* a label has no width or height, but merely a text anchor location. The text
* is positioned relative to this anchor location based on the
* {@link #textAlign}, {@link #textBaseline} and {@link #textMargin} properties.
* Furthermore, the text may be rotated using {@link #textAngle}.
*
* <p>Labels ignore events, so as to not interfere with event handlers on
* underlying marks, such as bars. In the future, we may support event handlers
* on labels.
*
* <p>See also the <a href="../../api/Label.html">Label guide</a>.
*
* @extends pv.Mark
*/
pv.Label = function() {
pv.Mark.call(this);
};
pv.Label.prototype = pv.extend(pv.Mark)
.property("text", String)
.property("font", String)
.property("textAngle", Number)
.property("textStyle", pv.color)
.property("textAlign", String)
.property("textBaseline", String)
.property("textMargin", Number)
.property("textDecoration", String)
.property("textShadow", String);
pv.Label.prototype.type = "label";
/**
* The character data to render; a string. The default value of the text
* property is the identity function, meaning the label's associated datum will
* be rendered using its <tt>toString</tt>.
*
* @type string
* @name pv.Label.prototype.text
*/
/**
* The font format, per the CSS Level 2 specification. The default font is "10px
* sans-serif", for consistency with the HTML 5 canvas element specification.
* Note that since text is not wrapped, any line-height property will be
* ignored. The other font-style, font-variant, font-weight, font-size and
* font-family properties are supported.
*
* @see <a href="http://www.w3.org/TR/CSS2/fonts.html#font-shorthand">CSS2 fonts</a>
* @type string
* @name pv.Label.prototype.font
*/
/**
* The rotation angle, in radians. Text is rotated clockwise relative to the
* anchor location. For example, with the default left alignment, an angle of
* Math.PI / 2 causes text to proceed downwards. The default angle is zero.
*
* @type number
* @name pv.Label.prototype.textAngle
*/
/**
* The text color. The name "textStyle" is used for consistency with "fillStyle"
* and "strokeStyle", although it might be better to rename this property (and
* perhaps use the same name as "strokeStyle"). The default color is black.
*
* @type string
* @name pv.Label.prototype.textStyle
* @see pv.color
*/
/**
* The horizontal text alignment. One of:<ul>
*
* <li>left
* <li>center
* <li>right
*
* </ul>The default horizontal alignment is left.
*
* @type string
* @name pv.Label.prototype.textAlign
*/
/**
* The vertical text alignment. One of:<ul>
*
* <li>top
* <li>middle
* <li>bottom
*
* </ul>The default vertical alignment is bottom.
*
* @type string
* @name pv.Label.prototype.textBaseline
*/
/**
* The text margin; may be specified in pixels, or in font-dependent units (such
* as ".1ex"). The margin can be used to pad text away from its anchor location,
* in a direction dependent on the horizontal and vertical alignment
* properties. For example, if the text is left- and middle-aligned, the margin
* shifts the text to the right. The default margin is 3 pixels.
*
* @type number
* @name pv.Label.prototype.textMargin
*/
/**
* A list of shadow effects to be applied to text, per the CSS Text Level 3
* text-shadow property. An example specification is "0.1em 0.1em 0.1em
* rgba(0,0,0,.5)"; the first length is the horizontal offset, the second the
* vertical offset, and the third the blur radius.
*
* @see <a href="http://www.w3.org/TR/css3-text/#text-shadow">CSS3 text</a>
* @type string
* @name pv.Label.prototype.textShadow
*/
/**
* A list of decoration to be applied to text, per the CSS Text Level 3
* text-decoration property. An example specification is "underline".
*
* @see <a href="http://www.w3.org/TR/css3-text/#text-decoration">CSS3 text</a>
* @type string
* @name pv.Label.prototype.textDecoration
*/
/**
* Default properties for labels. See the individual properties for the default
* values.
*
* @type pv.Label
*/
pv.Label.prototype.defaults = new pv.Label()
.extend(pv.Mark.prototype.defaults)
.events("none")
.text(pv.identity)
.font("10px sans-serif")
.textAngle(0)
.textStyle("black")
.textAlign("left")
.textBaseline("bottom")
.textMargin(3);
/**
* Constructs a new line mark with default properties. Lines are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents a series of connected line segments, or <i>polyline</i>,
* that can be stroked with a configurable color and thickness. Each
* articulation point in the line corresponds to a datum; for <i>n</i> points,
* <i>n</i>-1 connected line segments are drawn. The point is positioned using
* the box model. Arbitrary paths are also possible, allowing radar plots and
* other custom visualizations.
*
* <p>Like areas, lines can be stroked and filled with arbitrary colors. In most
* cases, lines are only stroked, but the fill style can be used to construct
* arbitrary polygons.
*
* <p>See also the <a href="../../api/Line.html">Line guide</a>.
*
* @extends pv.Mark
*/
pv.Line = function() {
pv.Mark.call(this);
};
pv.Line.prototype = pv.extend(pv.Mark)
.property("lineWidth", Number)
.property("lineJoin", String)
.property("strokeStyle", pv.color)
.property("fillStyle", pv.color)
.property("segmented", Boolean)
.property("interpolate", String)
.property("eccentricity", Number)
.property("tension", Number);
pv.Line.prototype.type = "line";
/**
* The width of stroked lines, in pixels; used in conjunction with
* <tt>strokeStyle</tt> to stroke the line.
*
* @type number
* @name pv.Line.prototype.lineWidth
*/
/**
* The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
* stroke the line. The default value of this property is a categorical color.
*
* @type string
* @name pv.Line.prototype.strokeStyle
* @see pv.color
*/
/**
* The type of corners where two lines meet. Accepted values are "bevel",
* "round" and "miter". The default value is "miter".
*
* <p>For segmented lines, only "miter" joins and "linear" interpolation are
* currently supported. Any other value, including null, will disable joins,
* producing disjoint line segments. Note that the miter joins must be computed
* manually (at least in the current SVG renderer); since this calculation may
* be expensive and unnecessary for small lines, specifying null can improve
* performance significantly.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type string
* @name pv.Line.prototype.lineJoin
*/
/**
* The line fill style; if non-null, the interior of the line is closed and
* filled with the specified color. The default value of this property is a
* null, meaning that lines are not filled by default.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type string
* @name pv.Line.prototype.fillStyle
* @see pv.color
*/
/**
* Whether the line is segmented; whether variations in stroke style, line width
* and the other properties are treated as fixed. Rendering segmented lines is
* noticeably slower than non-segmented lines.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type boolean
* @name pv.Line.prototype.segmented
*/
/**
* How to interpolate between values. Linear interpolation ("linear") is the
* default, producing a straight line between points. For piecewise constant
* functions (i.e., step functions), either "step-before" or "step-after" can be
* specified. To draw a clockwise circular arc between points, specify "polar";
* to draw a counterclockwise circular arc between points, specify
* "polar-reverse". To draw open uniform b-splines, specify "basis". To draw
* cardinal splines, specify "cardinal"; see also {@link #tension}.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type string
* @name pv.Line.prototype.interpolate
*/
/**
* The eccentricity of polar line segments; used in conjunction with
* interpolate("polar"). The default value of 0 means that line segments are
* drawn as circular arcs. A value of 1 draws a straight line. A value between 0
* and 1 draws an elliptical arc with the given eccentricity.
*
* @type number
* @name pv.Line.prototype.eccentricity
*/
/**
* The tension of cardinal splines; used in conjunction with
* interpolate("cardinal"). A value between 0 and 1 draws cardinal splines with
* the given tension. In some sense, the tension can be interpreted as the
* "length" of the tangent; a tension of 1 will yield all zero tangents (i.e.,
* linear interpolation), and a tension of 0 yields a Catmull-Rom spline. The
* default value is 0.7.
*
* <p>This property is <i>fixed</i>. See {@link pv.Mark}.
*
* @type number
* @name pv.Line.prototype.tension
*/
/**
* Default properties for lines. By default, there is no fill and the stroke
* style is a categorical color. The default interpolation is linear.
*
* @type pv.Line
*/
pv.Line.prototype.defaults = new pv.Line()
.extend(pv.Mark.prototype.defaults)
.lineJoin("miter")
.lineWidth(1.5)
.strokeStyle(pv.Colors.category10().by(pv.parent))
.interpolate("linear")
.eccentricity(0)
.tension(.7);
/** @private Reuse Area's implementation for segmented bind & build. */
pv.Line.prototype.bind = pv.Area.prototype.bind;
pv.Line.prototype.buildInstance = pv.Area.prototype.buildInstance;
/**
* Constructs a new line anchor with default properties. Lines support five
* different anchors:<ul>
*
* <li>top
* <li>left
* <li>center
* <li>bottom
* <li>right
*
* </ul>In addition to positioning properties (left, right, top bottom), the
* anchors support text rendering properties (text-align, text-baseline). Text is
* rendered to appear outside the line. Note that this behavior is different
* from other mark anchors, which default to rendering text <i>inside</i> the
* mark.
*
* <p>For consistency with the other mark types, the anchor positions are
* defined in terms of their opposite edge. For example, the top anchor defines
* the bottom property, such that a bar added to the top anchor grows upward.
*
* @param {string} name the anchor name; either a string or a property function.
* @returns {pv.Anchor}
*/
pv.Line.prototype.anchor = function(name) {
return pv.Area.prototype.anchor.call(this, name)
.textAlign(function(d) {
switch (this.name()) {
case "left": return "right";
case "bottom":
case "top":
case "center": return "center";
case "right": return "left";
}
})
.textBaseline(function(d) {
switch (this.name()) {
case "right":
case "left":
case "center": return "middle";
case "top": return "bottom";
case "bottom": return "top";
}
});
};
/**
* Constructs a new rule with default properties. Rules are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents a horizontal or vertical rule. Rules are frequently used
* for axes and grid lines. For example, specifying only the bottom property
* draws horizontal rules, while specifying only the left draws vertical
* rules. Rules can also be used as thin bars. The visual style is controlled in
* the same manner as lines.
*
* <p>Rules are positioned exclusively the standard box model properties. The
* following combinations of properties are supported:
*
* <table>
* <thead><th style="width:12em;">Properties</th><th>Orientation</th></thead>
* <tbody>
* <tr><td>left</td><td>vertical</td></tr>
* <tr><td>right</td><td>vertical</td></tr>
* <tr><td>left, bottom, top</td><td>vertical</td></tr>
* <tr><td>right, bottom, top</td><td>vertical</td></tr>
* <tr><td>top</td><td>horizontal</td></tr>
* <tr><td>bottom</td><td>horizontal</td></tr>
* <tr><td>top, left, right</td><td>horizontal</td></tr>
* <tr><td>bottom, left, right</td><td>horizontal</td></tr>
* <tr><td>left, top, height</td><td>vertical</td></tr>
* <tr><td>left, bottom, height</td><td>vertical</td></tr>
* <tr><td>right, top, height</td><td>vertical</td></tr>
* <tr><td>right, bottom, height</td><td>vertical</td></tr>
* <tr><td>left, top, width</td><td>horizontal</td></tr>
* <tr><td>left, bottom, width</td><td>horizontal</td></tr>
* <tr><td>right, top, width</td><td>horizontal</td></tr>
* <tr><td>right, bottom, width</td><td>horizontal</td></tr>
* </tbody>
* </table>
*
* <p>Small rules can be used as tick marks; alternatively, a {@link Dot} with
* the "tick" shape can be used.
*
* <p>See also the <a href="../../api/Rule.html">Rule guide</a>.
*
* @see pv.Line
* @extends pv.Mark
*/
pv.Rule = function() {
pv.Mark.call(this);
};
pv.Rule.prototype = pv.extend(pv.Mark)
.property("width", Number)
.property("height", Number)
.property("lineWidth", Number)
.property("strokeStyle", pv.color);
pv.Rule.prototype.type = "rule";
/**
* The width of the rule, in pixels. If the left position is specified, the rule
* extends rightward from the left edge; if the right position is specified, the
* rule extends leftward from the right edge.
*
* @type number
* @name pv.Rule.prototype.width
*/
/**
* The height of the rule, in pixels. If the bottom position is specified, the
* rule extends upward from the bottom edge; if the top position is specified,
* the rule extends downward from the top edge.
*
* @type number
* @name pv.Rule.prototype.height
*/
/**
* The width of stroked lines, in pixels; used in conjunction with
* <tt>strokeStyle</tt> to stroke the rule. The default value is 1 pixel.
*
* @type number
* @name pv.Rule.prototype.lineWidth
*/
/**
* The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
* stroke the rule. The default value of this property is black.
*
* @type string
* @name pv.Rule.prototype.strokeStyle
* @see pv.color
*/
/**
* Default properties for rules. By default, a single-pixel black line is
* stroked.
*
* @type pv.Rule
*/
pv.Rule.prototype.defaults = new pv.Rule()
.extend(pv.Mark.prototype.defaults)
.lineWidth(1)
.strokeStyle("black")
.antialias(false);
/**
* Constructs a new rule anchor with default properties. Rules support five
* different anchors:<ul>
*
* <li>top
* <li>left
* <li>center
* <li>bottom
* <li>right
*
* </ul>In addition to positioning properties (left, right, top bottom), the
* anchors support text rendering properties (text-align, text-baseline). Text is
* rendered to appear outside the rule. Note that this behavior is different
* from other mark anchors, which default to rendering text <i>inside</i> the
* mark.
*
* <p>For consistency with the other mark types, the anchor positions are
* defined in terms of their opposite edge. For example, the top anchor defines
* the bottom property, such that a bar added to the top anchor grows upward.
*
* @param {string} name the anchor name; either a string or a property function.
* @returns {pv.Anchor}
*/
pv.Rule.prototype.anchor = pv.Line.prototype.anchor;
/** @private Sets width or height based on orientation. */
pv.Rule.prototype.buildImplied = function(s) {
var l = s.left, r = s.right, t = s.top, b = s.bottom;
/* Determine horizontal or vertical orientation. */
if ((s.width != null)
|| ((l == null) && (r == null))
|| ((r != null) && (l != null))) {
s.height = 0;
} else {
s.width = 0;
}
pv.Mark.prototype.buildImplied.call(this, s);
};
/**
* Constructs a new, empty panel with default properties. Panels, with the
* exception of the root panel, are not typically constructed directly; instead,
* they are added to an existing panel or mark via {@link pv.Mark#add}.
*
* @class Represents a container mark. Panels allow repeated or nested
* structures, commonly used in small multiple displays where a small
* visualization is tiled to facilitate comparison across one or more
* dimensions. Other types of visualizations may benefit from repeated and
* possibly overlapping structure as well, such as stacked area charts. Panels
* can also offset the position of marks to provide padding from surrounding
* content.
*
* <p>All Protovis displays have at least one panel; this is the root panel to
* which marks are rendered. The box model properties (four margins, width and
* height) are used to offset the positions of contained marks. The data
* property determines the panel count: a panel is generated once per associated
* datum. When nested panels are used, property functions can declare additional
* arguments to access the data associated with enclosing panels.
*
* <p>Panels can be rendered inline, facilitating the creation of sparklines.
* This allows designers to reuse browser layout features, such as text flow and
* tables; designers can also overlay HTML elements such as rich text and
* images.
*
* <p>All panels have a <tt>children</tt> array (possibly empty) containing the
* child marks in the order they were added. Panels also have a <tt>root</tt>
* field which points to the root (outermost) panel; the root panel's root field
* points to itself.
*
* <p>See also the <a href="../../api/">Protovis guide</a>.
*
* @extends pv.Bar
*/
pv.Panel = function() {
pv.Bar.call(this);
/**
* The child marks; zero or more {@link pv.Mark}s in the order they were
* added.
*
* @see #add
* @type pv.Mark[]
*/
this.children = [];
this.root = this;
/**
* The internal $dom field is set by the Protovis loader; see lang/init.js. It
* refers to the script element that contains the Protovis specification, so
* that the panel knows where in the DOM to insert the generated SVG element.
*
* @private
*/
this.$dom = pv.$ && pv.$.s;
};
pv.Panel.prototype = pv.extend(pv.Bar)
.property("transform")
.property("overflow", String)
.property("canvas", function(c) {
return (typeof c == "string")
? document.getElementById(c)
: c; // assume that c is the passed-in element
});
pv.Panel.prototype.type = "panel";
/**
* The canvas element; either the string ID of the canvas element in the current
* document, or a reference to the canvas element itself. If null, a canvas
* element will be created and inserted into the document at the location of the
* script element containing the current Protovis specification. This property
* only applies to root panels and is ignored on nested panels.
*
* <p>Note: the "canvas" element here refers to a <tt>div</tt> (or other suitable
* HTML container element), <i>not</i> a <tt>canvas</tt> element. The name of
* this property is a historical anachronism from the first implementation that
* used HTML 5 canvas, rather than SVG.
*
* @type string
* @name pv.Panel.prototype.canvas
*/
/**
* Specifies whether child marks are clipped when they overflow this panel.
* This affects the clipping of all this panel's descendant marks.
*
* @type string
* @name pv.Panel.prototype.overflow
* @see <a href="http://www.w3.org/TR/CSS2/visufx.html#overflow">CSS2</a>
*/
/**
* The transform to be applied to child marks. The default transform is
* identity, which has no effect. Note that the panel's own fill and stroke are
* not affected by the transform, and panel's transform only affects the
* <tt>scale</tt> of child marks, not the panel itself.
*
* @type pv.Transform
* @name pv.Panel.prototype.transform
* @see pv.Mark#scale
*/
/**
* Default properties for panels. By default, the margins are zero, the fill
* style is transparent.
*
* @type pv.Panel
*/
pv.Panel.prototype.defaults = new pv.Panel()
.extend(pv.Bar.prototype.defaults)
.fillStyle(null) // override Bar default
.overflow("visible");
/**
* Returns an anchor with the specified name. This method is overridden such
* that adding to a panel's anchor adds to the panel, rather than to the panel's
* parent.
*
* @param {string} name the anchor name; either a string or a property function.
* @returns {pv.Anchor} the new anchor.
*/
pv.Panel.prototype.anchor = function(name) {
var anchor = pv.Bar.prototype.anchor.call(this, name);
anchor.parent = this;
return anchor;
};
/**
* Adds a new mark of the specified type to this panel. Unlike the normal
* {@link Mark#add} behavior, adding a mark to a panel does not cause the mark
* to inherit from the panel. Since the contained marks are offset by the panel
* margins already, inheriting properties is generally undesirable; of course,
* it is always possible to change this behavior by calling {@link Mark#extend}
* explicitly.
*
* @param {function} type the type of the new mark to add.
* @returns {pv.Mark} the new mark.
*/
pv.Panel.prototype.add = function(type) {
var child = new type();
child.parent = this;
child.root = this.root;
child.childIndex = this.children.length;
this.children.push(child);
return child;
};
/** @private Bind this panel, then any child marks recursively. */
pv.Panel.prototype.bind = function() {
pv.Mark.prototype.bind.call(this);
for (var i = 0; i < this.children.length; i++) {
this.children[i].bind();
}
};
/**
* @private Evaluates all of the properties for this panel for the specified
* instance <tt>s</tt> in the scene graph, including recursively building the
* scene graph for child marks.
*
* @param s a node in the scene graph; the instance of the panel to build.
* @see Mark#scene
*/
pv.Panel.prototype.buildInstance = function(s) {
pv.Bar.prototype.buildInstance.call(this, s);
if (!s.visible) return;
if (!s.children) s.children = [];
/*
* Multiply the current scale factor by this panel's transform. Also clear the
* default index as we recurse into child marks; it will be reset to the
* current index when the next panel instance is built.
*/
var scale = this.scale * s.transform.k, child, n = this.children.length;
pv.Mark.prototype.index = -1;
/*
* Build each child, passing in the parent (this panel) scene graph node. The
* child mark's scene is initialized from the corresponding entry in the
* existing scene graph, such that properties from the previous build can be
* reused; this is largely to facilitate the recycling of SVG elements.
*/
for (var i = 0; i < n; i++) {
child = this.children[i];
child.scene = s.children[i]; // possibly undefined
child.scale = scale;
child.build();
}
/*
* Once the child marks have been built, the new scene graph nodes are removed
* from the child marks and placed into the scene graph. The nodes cannot
* remain on the child nodes because this panel (or a parent panel) may be
* instantiated multiple times!
*/
for (var i = 0; i < n; i++) {
child = this.children[i];
s.children[i] = child.scene;
delete child.scene;
delete child.scale;
}
/* Delete any expired child scenes. */
s.children.length = n;
};
/**
* @private Computes the implied properties for this panel for the specified
* instance <tt>s</tt> in the scene graph. Panels have two implied
* properties:<ul>
*
* <li>The <tt>canvas</tt> property references the DOM element, typically a DIV,
* that contains the SVG element that is used to display the visualization. This
* property may be specified as a string, referring to the unique ID of the
* element in the DOM. The string is converted to a reference to the DOM
* element. The width and height of the SVG element is inferred from this DOM
* element. If no canvas property is specified, a new SVG element is created and
* inserted into the document, using the panel dimensions; see
* {@link #createCanvas}.
*
* <li>The <tt>children</tt> array, while not a property per se, contains the
* scene graph for each child mark. This array is initialized to be empty, and
* is populated above in {@link #buildInstance}.
*
* </ul>The current implementation creates the SVG element, if necessary, during
* the build phase; in the future, it may be preferrable to move this to the
* update phase, although then the canvas property would be undefined. In
* addition, DOM inspection is necessary to define the implied width and height
* properties that may be inferred from the DOM.
*
* @param s a node in the scene graph; the instance of the panel to build.
*/
pv.Panel.prototype.buildImplied = function(s) {
if (!this.parent) {
var c = s.canvas;
if (c) {
/* Clear the container if it's not associated with this panel. */
if (c.$panel != this) {
c.$panel = this;
while (c.lastChild) c.removeChild(c.lastChild);
}
/* If width and height weren't specified, inspect the container. */
var w, h;
if (s.width == null) {
w = parseFloat(pv.css(c, "width"));
s.width = w - s.left - s.right;
}
if (s.height == null) {
h = parseFloat(pv.css(c, "height"));
s.height = h - s.top - s.bottom;
}
} else {
var cache = this.$canvas || (this.$canvas = []);
if (!(c = cache[this.index])) {
c = cache[this.index] = document.createElement("span");
if (this.$dom) { // script element for text/javascript+protovis
this.$dom.parentNode.insertBefore(c, this.$dom);
} else { // find the last element in the body
var n = document.body;
while (n.lastChild && n.lastChild.tagName) n = n.lastChild;
if (n != document.body) n = n.parentNode;
n.appendChild(c);
}
}
}
s.canvas = c;
}
if (!s.transform) s.transform = pv.Transform.identity;
pv.Mark.prototype.buildImplied.call(this, s);
};
/**
* Constructs a new image with default properties. Images are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents an image, either a static resource or a dynamically-
* generated pixel buffer. Images share the same layout and style properties as
* bars. The external image resource is specified via the {@link #url}
* property. The optional fill, if specified, appears beneath the image, while
* the optional stroke appears above the image.
*
* <p>Dynamic images such as heatmaps are supported using the {@link #image}
* psuedo-property. This function is passed the <i>x</i> and <i>y</i> index, in
* addition to the current data stack. The return value is a {@link pv.Color},
* or null for transparent. A string can also be returned, which will be parsed
* into a color; however, it is typically much faster to return an object with
* <tt>r</tt>, <tt>g</tt>, <tt>b</tt> and <tt>a</tt> attributes, to avoid the
* cost of parsing and object instantiation.
*
* <p>See {@link pv.Bar} for details on positioning properties.
*
* @extends pv.Bar
*/
pv.Image = function() {
pv.Bar.call(this);
};
pv.Image.prototype = pv.extend(pv.Bar)
.property("url", String)
.property("imageWidth", Number)
.property("imageHeight", Number);
pv.Image.prototype.type = "image";
/**
* The URL of the image to display. The set of supported image types is
* browser-dependent; PNG and JPEG are recommended.
*
* @type string
* @name pv.Image.prototype.url
*/
/**
* The width of the image in pixels. For static images, this property is
* computed implicitly from the loaded image resources. For dynamic images, this
* property can be used to specify the width of the pixel buffer; otherwise, the
* value is derived from the <tt>width</tt> property.
*
* @type number
* @name pv.Image.prototype.imageWidth
*/
/**
* The height of the image in pixels. For static images, this property is
* computed implicitly from the loaded image resources. For dynamic images, this
* property can be used to specify the height of the pixel buffer; otherwise, the
* value is derived from the <tt>height</tt> property.
*
* @type number
* @name pv.Image.prototype.imageHeight
*/
/**
* Default properties for images. By default, there is no stroke or fill style.
*
* @type pv.Image
*/
pv.Image.prototype.defaults = new pv.Image()
.extend(pv.Bar.prototype.defaults)
.fillStyle(null);
/**
* Specifies the dynamic image function. By default, no image function is
* specified and the <tt>url</tt> property is used to load a static image
* resource. If an image function is specified, it will be invoked for each
* pixel in the image, based on the related <tt>imageWidth</tt> and
* <tt>imageHeight</tt> properties.
*
* <p>For example, given a two-dimensional array <tt>heatmap</tt>, containing
* numbers in the range [0, 1] in row-major order, a simple monochrome heatmap
* image can be specified as:
*
* <pre>vis.add(pv.Image)
* .imageWidth(heatmap[0].length)
* .imageHeight(heatmap.length)
* .image(pv.ramp("white", "black").by(function(x, y) heatmap[y][x]));</pre>
*
* For fastest performance, use an ordinal scale which caches the fixed color
* palette, or return an object literal with <tt>r</tt>, <tt>g</tt>, <tt>b</tt>
* and <tt>a</tt> attributes. A {@link pv.Color} or string can also be returned,
* though this typically results in slower performance.
*
* @param {function} f the new sizing function.
* @returns {pv.Layout.Pack} this.
*/
pv.Image.prototype.image = function(f) {
/** @private */
this.$image = function() {
var c = f.apply(this, arguments);
return c == null ? pv.Color.transparent
: typeof c == "string" ? pv.color(c)
: c;
};
return this;
};
/** @private Scan the proto chain for an image function. */
pv.Image.prototype.bind = function() {
pv.Bar.prototype.bind.call(this);
var binds = this.binds, mark = this;
do {
binds.image = mark.$image;
} while (!binds.image && (mark = mark.proto));
};
/** @private */
pv.Image.prototype.buildImplied = function(s) {
pv.Bar.prototype.buildImplied.call(this, s);
if (!s.visible) return;
/* Compute the implied image dimensions. */
if (s.imageWidth == null) s.imageWidth = s.width;
if (s.imageHeight == null) s.imageHeight = s.height;
/* Compute the pixel values. */
if ((s.url == null) && this.binds.image) {
/* Cache the canvas element to reuse across renders. */
var canvas = this.$canvas || (this.$canvas = document.createElement("canvas")),
context = canvas.getContext("2d"),
w = s.imageWidth,
h = s.imageHeight,
stack = pv.Mark.stack,
data;
/* Evaluate the image function, storing into a CanvasPixelArray. */
canvas.width = w;
canvas.height = h;
data = (s.image = context.createImageData(w, h)).data;
stack.unshift(null, null);
for (var y = 0, p = 0; y < h; y++) {
stack[1] = y;
for (var x = 0; x < w; x++) {
stack[0] = x;
var color = this.binds.image.apply(this, stack);
data[p++] = color.r;
data[p++] = color.g;
data[p++] = color.b;
data[p++] = 255 * color.a;
}
}
stack.splice(0, 2);
}
};
/**
* Constructs a new wedge with default properties. Wedges are not typically
* constructed directly, but by adding to a panel or an existing mark via
* {@link pv.Mark#add}.
*
* @class Represents a wedge, or pie slice. Specified in terms of start and end
* angle, inner and outer radius, wedges can be used to construct donut charts
* and polar bar charts as well. If the {@link #angle} property is used, the end
* angle is implied by adding this value to start angle. By default, the start
* angle is the previously-generated wedge's end angle. This design allows
* explicit control over the wedge placement if desired, while offering
* convenient defaults for the construction of radial graphs.
*
* <p>The center point of the circle is positioned using the standard box model.
* The wedge can be stroked and filled, similar to {@link pv.Bar}.
*
* <p>See also the <a href="../../api/Wedge.html">Wedge guide</a>.
*
* @extends pv.Mark
*/
pv.Wedge = function() {
pv.Mark.call(this);
};
pv.Wedge.prototype = pv.extend(pv.Mark)
.property("startAngle", Number)
.property("endAngle", Number)
.property("angle", Number)
.property("innerRadius", Number)
.property("outerRadius", Number)
.property("lineWidth", Number)
.property("strokeStyle", pv.color)
.property("fillStyle", pv.color);
pv.Wedge.prototype.type = "wedge";
/**
* The start angle of the wedge, in radians. The start angle is measured
* clockwise from the 3 o'clock position. The default value of this property is
* the end angle of the previous instance (the {@link Mark#sibling}), or -PI / 2
* for the first wedge; for pie and donut charts, typically only the
* {@link #angle} property needs to be specified.
*
* @type number
* @name pv.Wedge.prototype.startAngle
*/
/**
* The end angle of the wedge, in radians. If not specified, the end angle is
* implied as the start angle plus the {@link #angle}.
*
* @type number
* @name pv.Wedge.prototype.endAngle
*/
/**
* The angular span of the wedge, in radians. This property is used if end angle
* is not specified.
*
* @type number
* @name pv.Wedge.prototype.angle
*/
/**
* The inner radius of the wedge, in pixels. The default value of this property
* is zero; a positive value will produce a donut slice rather than a pie slice.
* The inner radius can vary per-wedge.
*
* @type number
* @name pv.Wedge.prototype.innerRadius
*/
/**
* The outer radius of the wedge, in pixels. This property is required. For
* pies, only this radius is required; for donuts, the inner radius must be
* specified as well. The outer radius can vary per-wedge.
*
* @type number
* @name pv.Wedge.prototype.outerRadius
*/
/**
* The width of stroked lines, in pixels; used in conjunction with
* <tt>strokeStyle</tt> to stroke the wedge's border.
*
* @type number
* @name pv.Wedge.prototype.lineWidth
*/
/**
* The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
* stroke the wedge's border. The default value of this property is null,
* meaning wedges are not stroked by default.
*
* @type string
* @name pv.Wedge.prototype.strokeStyle
* @see pv.color
*/
/**
* The wedge fill style; if non-null, the interior of the wedge is filled with
* the specified color. The default value of this property is a categorical
* color.
*
* @type string
* @name pv.Wedge.prototype.fillStyle
* @see pv.color
*/
/**
* Default properties for wedges. By default, there is no stroke and the fill
* style is a categorical color.
*
* @type pv.Wedge
*/
pv.Wedge.prototype.defaults = new pv.Wedge()
.extend(pv.Mark.prototype.defaults)
.startAngle(function() {
var s = this.sibling();
return s ? s.endAngle : -Math.PI / 2;
})
.innerRadius(0)
.lineWidth(1.5)
.strokeStyle(null)
.fillStyle(pv.Colors.category20().by(pv.index));
/**
* Returns the mid-radius of the wedge, which is defined as half-way between the
* inner and outer radii.
*
* @see #innerRadius
* @see #outerRadius
* @returns {number} the mid-radius, in pixels.
*/
pv.Wedge.prototype.midRadius = function() {
return (this.innerRadius() + this.outerRadius()) / 2;
};
/**
* Returns the mid-angle of the wedge, which is defined as half-way between the
* start and end angles.
*
* @see #startAngle
* @see #endAngle
* @returns {number} the mid-angle, in radians.
*/
pv.Wedge.prototype.midAngle = function() {
return (this.startAngle() + this.endAngle()) / 2;
};
/**
* Constructs a new wedge anchor with default properties. Wedges support five
* different anchors:<ul>
*
* <li>outer
* <li>inner
* <li>center
* <li>start
* <li>end
*
* </ul>In addition to positioning properties (left, right, top bottom), the
* anchors support text rendering properties (text-align, text-baseline,
* textAngle). Text is rendered to appear inside the wedge.
*
* @param {string} name the anchor name; either a string or a property function.
* @returns {pv.Anchor}
*/
pv.Wedge.prototype.anchor = function(name) {
function partial(s) { return s.innerRadius || s.angle < 2 * Math.PI; }
function midRadius(s) { return (s.innerRadius + s.outerRadius) / 2; }
function midAngle(s) { return (s.startAngle + s.endAngle) / 2; }
return pv.Mark.prototype.anchor.call(this, name)
.left(function() {
var s = this.scene.target[this.index];
if (partial(s)) switch (this.name()) {
case "outer": return s.left + s.outerRadius * Math.cos(midAngle(s));
case "inner": return s.left + s.innerRadius * Math.cos(midAngle(s));
case "start": return s.left + midRadius(s) * Math.cos(s.startAngle);
case "center": return s.left + midRadius(s) * Math.cos(midAngle(s));
case "end": return s.left + midRadius(s) * Math.cos(s.endAngle);
}
return s.left;
})
.top(function() {
var s = this.scene.target[this.index];
if (partial(s)) switch (this.name()) {
case "outer": return s.top + s.outerRadius * Math.sin(midAngle(s));
case "inner": return s.top + s.innerRadius * Math.sin(midAngle(s));
case "start": return s.top + midRadius(s) * Math.sin(s.startAngle);
case "center": return s.top + midRadius(s) * Math.sin(midAngle(s));
case "end": return s.top + midRadius(s) * Math.sin(s.endAngle);
}
return s.top;
})
.textAlign(function() {
var s = this.scene.target[this.index];
if (partial(s)) switch (this.name()) {
case "outer": return pv.Wedge.upright(midAngle(s)) ? "right" : "left";
case "inner": return pv.Wedge.upright(midAngle(s)) ? "left" : "right";
}
return "center";
})
.textBaseline(function() {
var s = this.scene.target[this.index];
if (partial(s)) switch (this.name()) {
case "start": return pv.Wedge.upright(s.startAngle) ? "top" : "bottom";
case "end": return pv.Wedge.upright(s.endAngle) ? "bottom" : "top";
}
return "middle";
})
.textAngle(function() {
var s = this.scene.target[this.index], a = 0;
if (partial(s)) switch (this.name()) {
case "center":
case "inner":
case "outer": a = midAngle(s); break;
case "start": a = s.startAngle; break;
case "end": a = s.endAngle; break;
}
return pv.Wedge.upright(a) ? a : (a + Math.PI);
});
};
/**
* Returns true if the specified angle is considered "upright", as in, text
* rendered at that angle would appear upright. If the angle is not upright,
* text is rotated 180 degrees to be upright, and the text alignment properties
* are correspondingly changed.
*
* @param {number} angle an angle, in radius.
* @returns {boolean} true if the specified angle is upright.
*/
pv.Wedge.upright = function(angle) {
angle = angle % (2 * Math.PI);
angle = (angle < 0) ? (2 * Math.PI + angle) : angle;
return (angle < Math.PI / 2) || (angle >= 3 * Math.PI / 2);
};
/** @private Sets angle based on endAngle or vice versa. */
pv.Wedge.prototype.buildImplied = function(s) {
if (s.angle == null) s.angle = s.endAngle - s.startAngle;
else if (s.endAngle == null) s.endAngle = s.startAngle + s.angle;
pv.Mark.prototype.buildImplied.call(this, s);
};
/**
* Abstract; not implemented. There is no explicit constructor; this class
* merely serves to document the attributes that are used on particles in
* physics simulations.
*
* @class A weighted particle that can participate in a force simulation.
*
* @name pv.Particle
*/
/**
* The next particle in the simulation. Particles form a singly-linked list.
*
* @field
* @type pv.Particle
* @name pv.Particle.prototype.next
*/
/**
* The <i>x</i>-position of the particle.
*
* @field
* @type number
* @name pv.Particle.prototype.x
*/
/**
* The <i>y</i>-position of the particle.
*
* @field
* @type number
* @name pv.Particle.prototype.y
*/
/**
* The <i>x</i>-velocity of the particle.
*
* @field
* @type number
* @name pv.Particle.prototype.vx
*/
/**
* The <i>y</i>-velocity of the particle.
*
* @field
* @type number
* @name pv.Particle.prototype.vy
*/
/**
* The <i>x</i>-position of the particle at -dt.
*
* @field
* @type number
* @name pv.Particle.prototype.px
*/
/**
* The <i>y</i>-position of the particle at -dt.
*
* @field
* @type number
* @name pv.Particle.prototype.py
*/
/**
* The <i>x</i>-force on the particle.
*
* @field
* @type number
* @name pv.Particle.prototype.fx
*/
/**
* The <i>y</i>-force on the particle.
*
* @field
* @type number
* @name pv.Particle.prototype.fy
*/
/**
* Constructs a new empty simulation.
*
* @param {array} particles
* @returns {pv.Simulation} a new simulation for the specified particles.
* @see pv.Simulation
*/
pv.simulation = function(particles) {
return new pv.Simulation(particles);
};
/**
* Constructs a new simulation for the specified particles.
*
* @class Represents a particle simulation. Particles are massive points in
* two-dimensional space. Forces can be applied to these particles, causing them
* to move. Constraints can also be applied to restrict particle movement, for
* example, constraining particles to a fixed position, or simulating collision
* between circular particles with area.
*
* <p>The simulation uses <a
* href="http://en.wikipedia.org/wiki/Verlet_integration">Position Verlet</a>
* integration, due to the ease with which <a
* href="http://www.teknikus.dk/tj/gdc2001.htm">geometric constraints</a> can be
* implemented. For each time step, Verlet integration is performed, new forces
* are accumulated, and then constraints are applied.
*
* <p>The simulation makes two simplifying assumptions: all particles are
* equal-mass, and the time step of the simulation is fixed. It would be easy to
* incorporate variable-mass particles as a future enhancement. Variable time
* steps are also possible, but are likely to introduce instability in the
* simulation.
*
* <p>This class can be used directly to simulate particle interaction.
* Alternatively, for network diagrams, see {@link pv.Layout.Force}.
*
* @param {array} particles an array of {@link pv.Particle}s to simulate.
* @see pv.Layout.Force
* @see pv.Force
* @see pv.Constraint
*/
pv.Simulation = function(particles) {
for (var i = 0; i < particles.length; i++) this.particle(particles[i]);
};
/**
* The particles in the simulation. Particles are stored as a linked list; this
* field represents the first particle in the simulation.
*
* @field
* @type pv.Particle
* @name pv.Simulation.prototype.particles
*/
/**
* The forces in the simulation. Forces are stored as a linked list; this field
* represents the first force in the simulation.
*
* @field
* @type pv.Force
* @name pv.Simulation.prototype.forces
*/
/**
* The constraints in the simulation. Constraints are stored as a linked list;
* this field represents the first constraint in the simulation.
*
* @field
* @type pv.Constraint
* @name pv.Simulation.prototype.constraints
*/
/**
* Adds the specified particle to the simulation.
*
* @param {pv.Particle} p the new particle.
* @returns {pv.Simulation} this.
*/
pv.Simulation.prototype.particle = function(p) {
p.next = this.particles;
/* Default velocities and forces to zero if unset. */
if (isNaN(p.px)) p.px = p.x;
if (isNaN(p.py)) p.py = p.y;
if (isNaN(p.fx)) p.fx = 0;
if (isNaN(p.fy)) p.fy = 0;
this.particles = p;
return this;
};
/**
* Adds the specified force to the simulation.
*
* @param {pv.Force} f the new force.
* @returns {pv.Simulation} this.
*/
pv.Simulation.prototype.force = function(f) {
f.next = this.forces;
this.forces = f;
return this;
};
/**
* Adds the specified constraint to the simulation.
*
* @param {pv.Constraint} c the new constraint.
* @returns {pv.Simulation} this.
*/
pv.Simulation.prototype.constraint = function(c) {
c.next = this.constraints;
this.constraints = c;
return this;
};
/**
* Apply constraints, and then set the velocities to zero.
*
* @returns {pv.Simulation} this.
*/
pv.Simulation.prototype.stabilize = function(n) {
var c;
if (!arguments.length) n = 3; // TODO use cooling schedule
for (var i = 0; i < n; i++) {
var q = new pv.Quadtree(this.particles);
for (c = this.constraints; c; c = c.next) c.apply(this.particles, q);
}
for (var p = this.particles; p; p = p.next) {
p.px = p.x;
p.py = p.y;
}
return this;
};
/**
* Advances the simulation one time-step.
*/
pv.Simulation.prototype.step = function() {
var p, f, c;
/*
* Assumptions:
* - The mass (m) of every particles is 1.
* - The time step (dt) is 1.
*/
/* Position Verlet integration. */
for (p = this.particles; p; p = p.next) {
var px = p.px, py = p.py;
p.px = p.x;
p.py = p.y;
p.x += p.vx = ((p.x - px) + p.fx);
p.y += p.vy = ((p.y - py) + p.fy);
}
/* Apply constraints, then accumulate new forces. */
var q = new pv.Quadtree(this.particles);
for (c = this.constraints; c; c = c.next) c.apply(this.particles, q);
for (p = this.particles; p; p = p.next) p.fx = p.fy = 0;
for (f = this.forces; f; f = f.next) f.apply(this.particles, q);
};
/**
* Constructs a new quadtree for the specified array of particles.
*
* @class Represents a quadtree: a two-dimensional recursive spatial
* subdivision. This particular implementation uses square partitions, dividing
* each square into four equally-sized squares. Each particle exists in a unique
* node; if multiple particles are in the same position, some particles may be
* stored on internal nodes rather than leaf nodes.
*
* <p>This quadtree can be used to accelerate various spatial operations, such
* as the Barnes-Hut approximation for computing n-body forces, or collision
* detection.
*
* @see pv.Force.charge
* @see pv.Constraint.collision
* @param {pv.Particle} particles the linked list of particles.
*/
pv.Quadtree = function(particles) {
var p;
/* Compute bounds. */
var x1 = Number.POSITIVE_INFINITY, y1 = x1,
x2 = Number.NEGATIVE_INFINITY, y2 = x2;
for (p = particles; p; p = p.next) {
if (p.x < x1) x1 = p.x;
if (p.y < y1) y1 = p.y;
if (p.x > x2) x2 = p.x;
if (p.y > y2) y2 = p.y;
}
/* Squarify the bounds. */
var dx = x2 - x1, dy = y2 - y1;
if (dx > dy) y2 = y1 + dx;
else x2 = x1 + dy;
this.xMin = x1;
this.yMin = y1;
this.xMax = x2;
this.yMax = y2;
/**
* @ignore Recursively inserts the specified particle <i>p</i> at the node
* <i>n</i> or one of its descendants. The bounds are defined by [<i>x1</i>,
* <i>x2</i>] and [<i>y1</i>, <i>y2</i>].
*/
function insert(n, p, x1, y1, x2, y2) {
if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid particles
if (n.leaf) {
if (n.p) {
/*
* If the particle at this leaf node is at the same position as the new
* particle we are adding, we leave the particle associated with the
* internal node while adding the new particle to a child node. This
* avoids infinite recursion.
*/
if ((Math.abs(n.p.x - p.x) + Math.abs(n.p.y - p.y)) < .01) {
insertChild(n, p, x1, y1, x2, y2);
} else {
var v = n.p;
n.p = null;
insertChild(n, v, x1, y1, x2, y2);
insertChild(n, p, x1, y1, x2, y2);
}
} else {
n.p = p;
}
} else {
insertChild(n, p, x1, y1, x2, y2);
}
}
/**
* @ignore Recursively inserts the specified particle <i>p</i> into a
* descendant of node <i>n</i>. The bounds are defined by [<i>x1</i>,
* <i>x2</i>] and [<i>y1</i>, <i>y2</i>].
*/
function insertChild(n, p, x1, y1, x2, y2) {
/* Compute the split point, and the quadrant in which to insert p. */
var sx = (x1 + x2) * .5,
sy = (y1 + y2) * .5,
right = p.x >= sx,
bottom = p.y >= sy;
/* Recursively insert into the child node. */
n.leaf = false;
switch ((bottom << 1) + right) {
case 0: n = n.c1 || (n.c1 = new pv.Quadtree.Node()); break;
case 1: n = n.c2 || (n.c2 = new pv.Quadtree.Node()); break;
case 2: n = n.c3 || (n.c3 = new pv.Quadtree.Node()); break;
case 3: n = n.c4 || (n.c4 = new pv.Quadtree.Node()); break;
}
/* Update the bounds as we recurse. */
if (right) x1 = sx; else x2 = sx;
if (bottom) y1 = sy; else y2 = sy;
insert(n, p, x1, y1, x2, y2);
}
/* Insert all particles. */
this.root = new pv.Quadtree.Node();
for (p = particles; p; p = p.next) insert(this.root, p, x1, y1, x2, y2);
};
/**
* The root node of the quadtree.
*
* @type pv.Quadtree.Node
* @name pv.Quadtree.prototype.root
*/
/**
* The minimum x-coordinate value of all contained particles.
*
* @type number
* @name pv.Quadtree.prototype.xMin
*/
/**
* The maximum x-coordinate value of all contained particles.
*
* @type number
* @name pv.Quadtree.prototype.xMax
*/
/**
* The minimum y-coordinate value of all contained particles.
*
* @type number
* @name pv.Quadtree.prototype.yMin
*/
/**
* The maximum y-coordinate value of all contained particles.
*
* @type number
* @name pv.Quadtree.prototype.yMax
*/
/**
* Constructs a new node.
*
* @class A node in a quadtree.
*
* @see pv.Quadtree
*/
pv.Quadtree.Node = function() {
/*
* Prepopulating all attributes significantly increases performance! Also,
* letting the language interpreter manage garbage collection was moderately
* faster than creating a cache pool.
*/
this.leaf = true;
this.c1 = null;
this.c2 = null;
this.c3 = null;
this.c4 = null;
this.p = null;
};
/**
* True if this node is a leaf node; i.e., it has no children. Note that both
* leaf nodes and non-leaf (internal) nodes may have associated particles. If
* this is a non-leaf node, then at least one of {@link #c1}, {@link #c2},
* {@link #c3} or {@link #c4} is guaranteed to be non-null.
*
* @type boolean
* @name pv.Quadtree.Node.prototype.leaf
*/
/**
* The particle associated with this node, if any.
*
* @type pv.Particle
* @name pv.Quadtree.Node.prototype.p
*/
/**
* The child node for the second quadrant, if any.
*
* @type pv.Quadtree.Node
* @name pv.Quadtree.Node.prototype.c2
*/
/**
* The child node for the third quadrant, if any.
*
* @type pv.Quadtree.Node
* @name pv.Quadtree.Node.prototype.c3
*/
/**
* The child node for the fourth quadrant, if any.
*
* @type pv.Quadtree.Node
* @name pv.Quadtree.Node.prototype.c4
*/
/**
* Abstract; see an implementing class.
*
* @class Represents a force that acts on particles. Note that this interface
* does not specify how to bind a force to specific particles; in general,
* forces are applied globally to all particles. However, some forces may be
* applied to specific particles or between particles, such as spring forces,
* through additional specialization.
*
* @see pv.Simulation
* @see pv.Particle
* @see pv.Force.charge
* @see pv.Force.drag
* @see pv.Force.spring
*/
pv.Force = {};
/**
* Applies this force to the specified particles.
*
* @function
* @name pv.Force.prototype.apply
* @param {pv.Particle} particles particles to which to apply this force.
* @param {pv.Quadtree} q a quadtree for spatial acceleration.
*/
/**
* Constructs a new charge force, with an optional charge constant. The charge
* constant can be negative for repulsion (e.g., particles with electrical
* charge of equal sign), or positive for attraction (e.g., massive particles
* with mutual gravity). The default charge constant is -40.
*
* @class An n-body force, as defined by Coulomb's law or Newton's law of
* gravitation, inversely proportional to the square of the distance between
* particles. Note that the force is independent of the <i>mass</i> of the
* associated particles, and that the particles do not have charges of varying
* magnitude; instead, the attraction or repulsion of all particles is globally
* specified as the charge {@link #constant}.
*
* <p>This particular implementation uses the Barnes-Hut algorithm. For details,
* see <a
* href="http://www.nature.com/nature/journal/v324/n6096/abs/324446a0.html">"A
* hierarchical O(N log N) force-calculation algorithm"</a>, J. Barnes &amp;
* P. Hut, <i>Nature</i> 1986.
*
* @name pv.Force.charge
* @param {number} [k] the charge constant.
*/
pv.Force.charge = function(k) {
var min = 2, // minimum distance at which to observe forces
min1 = 1 / min,
max = 500, // maximum distance at which to observe forces
max1 = 1 / max,
theta = .9, // Barnes-Hut theta approximation constant
force = {};
if (!arguments.length) k = -40; // default charge constant (repulsion)
/**
* Sets or gets the charge constant. If an argument is specified, it is the
* new charge constant. The charge constant can be negative for repulsion
* (e.g., particles with electrical charge of equal sign), or positive for
* attraction (e.g., massive particles with mutual gravity). The default
* charge constant is -40.
*
* @function
* @name pv.Force.charge.prototype.constant
* @param {number} x the charge constant.
* @returns {pv.Force.charge} this.
*/
force.constant = function(x) {
if (arguments.length) {
k = Number(x);
return force;
}
return k;
};
/**
* Sets or gets the domain; specifies the minimum and maximum domain within
* which charge forces are applied. A minimum distance threshold avoids
* applying forces that are two strong (due to granularity of the simulation's
* numeric integration). A maximum distance threshold improves performance by
* skipping force calculations for particles that are far apart.
*
* <p>The default domain is [2, 500].
*
* @function
* @name pv.Force.charge.prototype.domain
* @param {number} a
* @param {number} b
* @returns {pv.Force.charge} this.
*/
force.domain = function(a, b) {
if (arguments.length) {
min = Number(a);
min1 = 1 / min;
max = Number(b);
max1 = 1 / max;
return force;
}
return [min, max];
};
/**
* Sets or gets the Barnes-Hut approximation factor. The Barnes-Hut
* approximation criterion is the ratio of the size of the quadtree node to
* the distance from the point to the node's center of mass is beneath some
* threshold.
*
* @function
* @name pv.Force.charge.prototype.theta
* @param {number} x the new Barnes-Hut approximation factor.
* @returns {pv.Force.charge} this.
*/
force.theta = function(x) {
if (arguments.length) {
theta = Number(x);
return force;
}
return theta;
};
/**
* @ignore Recursively computes the center of charge for each node in the
* quadtree. This is equivalent to the center of mass, assuming that all
* particles have unit weight.
*/
function accumulate(n) {
var cx = 0, cy = 0;
n.cn = 0;
function accumulateChild(c) {
accumulate(c);
n.cn += c.cn;
cx += c.cn * c.cx;
cy += c.cn * c.cy;
}
if (!n.leaf) {
if (n.c1) accumulateChild(n.c1);
if (n.c2) accumulateChild(n.c2);
if (n.c3) accumulateChild(n.c3);
if (n.c4) accumulateChild(n.c4);
}
if (n.p) {
n.cn += k;
cx += k * n.p.x;
cy += k * n.p.y;
}
n.cx = cx / n.cn;
n.cy = cy / n.cn;
}
/**
* @ignore Recursively computes forces on the given particle using the given
* quadtree node. The Barnes-Hut approximation criterion is the ratio of the
* size of the quadtree node to the distance from the point to the node's
* center of mass is beneath some threshold.
*/
function forces(n, p, x1, y1, x2, y2) {
var dx = n.cx - p.x,
dy = n.cy - p.y,
dn = 1 / Math.sqrt(dx * dx + dy * dy);
/* Barnes-Hut criterion. */
if ((n.leaf && (n.p != p)) || ((x2 - x1) * dn < theta)) {
if (dn < max1) return;
if (dn > min1) dn = min1;
var kc = n.cn * dn * dn * dn,
fx = dx * kc,
fy = dy * kc;
p.fx += fx;
p.fy += fy;
} else if (!n.leaf) {
var sx = (x1 + x2) * .5, sy = (y1 + y2) * .5;
if (n.c1) forces(n.c1, p, x1, y1, sx, sy);
if (n.c2) forces(n.c2, p, sx, y1, x2, sy);
if (n.c3) forces(n.c3, p, x1, sy, sx, y2);
if (n.c4) forces(n.c4, p, sx, sy, x2, y2);
if (dn < max1) return;
if (dn > min1) dn = min1;
if (n.p && (n.p != p)) {
var kc = k * dn * dn * dn,
fx = dx * kc,
fy = dy * kc;
p.fx += fx;
p.fy += fy;
}
}
}
/**
* Applies this force to the specified particles. The force is applied between
* all pairs of particles within the domain, using the specified quadtree to
* accelerate n-body force calculation using the Barnes-Hut approximation
* criterion.
*
* @function
* @name pv.Force.charge.prototype.apply
* @param {pv.Particle} particles particles to which to apply this force.
* @param {pv.Quadtree} q a quadtree for spatial acceleration.
*/
force.apply = function(particles, q) {
accumulate(q.root);
for (var p = particles; p; p = p.next) {
forces(q.root, p, q.xMin, q.yMin, q.xMax, q.yMax);
}
};
return force;
};
/**
* Constructs a new drag force with the specified constant.
*
* @class Implements a drag force, simulating friction. The drag force is
* applied in the opposite direction of the particle's velocity. Since Position
* Verlet integration does not track velocities explicitly, the error term with
* this estimate of velocity is fairly high, so the drag force may be
* inaccurate.
*
* @extends pv.Force
* @param {number} k the drag constant.
* @see #constant
*/
pv.Force.drag = function(k) {
var force = {};
if (!arguments.length) k = .1; // default drag constant
/**
* Sets or gets the drag constant, in the range [0,1]. The default drag
* constant is 0.1. The drag forces scales linearly with the particle's
* velocity based on the given drag constant.
*
* @function
* @name pv.Force.drag.prototype.constant
* @param {number} x the new drag constant.
* @returns {pv.Force.drag} this, or the current drag constant.
*/
force.constant = function(x) {
if (arguments.length) { k = x; return force; }
return k;
};
/**
* Applies this force to the specified particles.
*
* @function
* @name pv.Force.drag.prototype.apply
* @param {pv.Particle} particles particles to which to apply this force.
*/
force.apply = function(particles) {
if (k) for (var p = particles; p; p = p.next) {
p.fx -= k * p.vx;
p.fy -= k * p.vy;
}
};
return force;
};
/**
* Constructs a new spring force with the specified constant. The links
* associated with this spring force must be specified before the spring force
* can be applied.
*
* @class Implements a spring force, per Hooke's law. The spring force can be
* configured with a tension constant, rest length, and damping factor. The
* tension and damping will automatically be normalized using the inverse square
* root of the maximum link degree of attached nodes; this makes springs weaker
* between nodes of high link degree.
*
* <p>Unlike other forces (such as charge and drag forces) which may be applied
* globally, spring forces are only applied between linked particles. Therefore,
* an array of links must be specified before this force can be applied; the
* links should be an array of {@link pv.Layout.Network.Link}s. See also
* {@link pv.Layout.Force} for an example of using spring and charge forces for
* network layout.
*
* @extends pv.Force
* @param {number} k the spring constant.
* @see #constant
* @see #links
*/
pv.Force.spring = function(k) {
var d = .1, // default damping factor
l = 20, // default rest length
links, // links on which to apply spring forces
kl, // per-spring normalization
force = {};
if (!arguments.length) k = .1; // default spring constant (tension)
/**
* Sets or gets the links associated with this spring force. Unlike other
* forces (such as charge and drag forces) which may be applied globally,
* spring forces are only applied between linked particles. Therefore, an
* array of links must be specified before this force can be applied; the
* links should be an array of {@link pv.Layout.Network.Link}s.
*
* @function
* @name pv.Force.spring.prototype.links
* @param {array} x the new array of links.
* @returns {pv.Force.spring} this, or the current array of links.
*/
force.links = function(x) {
if (arguments.length) {
links = x;
kl = x.map(function(l) {
return 1 / Math.sqrt(Math.max(
l.sourceNode.linkDegree,
l.targetNode.linkDegree));
});
return force;
}
return links;
};
/**
* Sets or gets the spring constant. The default value is 0.1; greater values
* will result in stronger tension. The spring tension is automatically
* normalized using the inverse square root of the maximum link degree of
* attached nodes.
*
* @function
* @name pv.Force.spring.prototype.constant
* @param {number} x the new spring constant.
* @returns {pv.Force.spring} this, or the current spring constant.
*/
force.constant = function(x) {
if (arguments.length) {
k = Number(x);
return force;
}
return k;
};
/**
* The spring damping factor, in the range [0,1]. Damping functions
* identically to drag forces, damping spring bounciness by applying a force
* in the opposite direction of attached nodes' velocities. The default value
* is 0.1. The spring damping is automatically normalized using the inverse
* square root of the maximum link degree of attached nodes.
*
* @function
* @name pv.Force.spring.prototype.damping
* @param {number} x the new spring damping factor.
* @returns {pv.Force.spring} this, or the current spring damping factor.
*/
force.damping = function(x) {
if (arguments.length) {
d = Number(x);
return force;
}
return d;
};
/**
* The spring rest length. The default value is 20 pixels.
*
* @function
* @name pv.Force.spring.prototype.length
* @param {number} x the new spring rest length.
* @returns {pv.Force.spring} this, or the current spring rest length.
*/
force.length = function(x) {
if (arguments.length) {
l = Number(x);
return force;
}
return l;
};
/**
* Applies this force to the specified particles.
*
* @function
* @name pv.Force.spring.prototype.apply
* @param {pv.Particle} particles particles to which to apply this force.
*/
force.apply = function(particles) {
for (var i = 0; i < links.length; i++) {
var a = links[i].sourceNode,
b = links[i].targetNode,
dx = a.x - b.x,
dy = a.y - b.y,
dn = Math.sqrt(dx * dx + dy * dy),
dd = dn ? (1 / dn) : 1,
ks = k * kl[i], // normalized tension
kd = d * kl[i], // normalized damping
kk = (ks * (dn - l) + kd * (dx * (a.vx - b.vx) + dy * (a.vy - b.vy)) * dd) * dd,
fx = -kk * (dn ? dx : (.01 * (.5 - Math.random()))),
fy = -kk * (dn ? dy : (.01 * (.5 - Math.random())));
a.fx += fx;
a.fy += fy;
b.fx -= fx;
b.fy -= fy;
}
};
return force;
};
/**
* Abstract; see an implementing class.
*
* @class Represents a constraint that acts on particles. Note that this
* interface does not specify how to bind a constraint to specific particles; in
* general, constraints are applied globally to all particles. However, some
* constraints may be applied to specific particles or between particles, such
* as position constraints, through additional specialization.
*
* @see pv.Simulation
* @see pv.Particle
* @see pv.Constraint.bound
* @see pv.Constraint.collision
* @see pv.Constraint.position
*/
pv.Constraint = {};
/**
* Applies this constraint to the specified particles.
*
* @function
* @name pv.Constraint.prototype.apply
* @param {pv.Particle} particles particles to which to apply this constraint.
* @param {pv.Quadtree} q a quadtree for spatial acceleration.
* @returns {pv.Constraint} this.
*/
/**
* Constructs a new collision constraint. The default search radius is 10, and
* the default repeat count is 1. A radius function must be specified to compute
* the radius of particles.
*
* @class Constraints circles to avoid overlap. Each particle is treated as a
* circle, with the radius of the particle computed using a specified function.
* For example, if the particle has an <tt>r</tt> attribute storing the radius,
* the radius <tt>function(d) d.r</tt> specifies a collision constraint using
* this radius. The radius function is passed each {@link pv.Particle} as the
* first argument.
*
* <p>To accelerate collision detection, this implementation uses a quadtree and
* a search radius. The search radius is computed as the maximum radius of all
* particles in the simulation.
*
* @see pv.Constraint
* @param {function} radius the radius function.
*/
pv.Constraint.collision = function(radius) {
var n = 1, // number of times to repeat the constraint
r1,
px1,
py1,
px2,
py2,
constraint = {};
if (!arguments.length) r1 = 10; // default search radius
/**
* Sets or gets the repeat count. If the repeat count is greater than 1, the
* constraint will be applied repeatedly; this is a form of the Gauss-Seidel
* method for constraints relaxation. Repeating the collision constraint makes
* the constraint have more of an effect when there is a potential for many
* co-occurring collisions.
*
* @function
* @name pv.Constraint.collision.prototype.repeat
* @param {number} x the number of times to repeat this constraint.
* @returns {pv.Constraint.collision} this.
*/
constraint.repeat = function(x) {
if (arguments.length) {
n = Number(x);
return constraint;
}
return n;
};
/** @private */
function constrain(n, p, x1, y1, x2, y2) {
if (!n.leaf) {
var sx = (x1 + x2) * .5,
sy = (y1 + y2) * .5,
top = sy > py1,
bottom = sy < py2,
left = sx > px1,
right = sx < px2;
if (top) {
if (n.c1 && left) constrain(n.c1, p, x1, y1, sx, sy);
if (n.c2 && right) constrain(n.c2, p, sx, y1, x2, sy);
}
if (bottom) {
if (n.c3 && left) constrain(n.c3, p, x1, sy, sx, y2);
if (n.c4 && right) constrain(n.c4, p, sx, sy, x2, y2);
}
}
if (n.p && (n.p != p)) {
var dx = p.x - n.p.x,
dy = p.y - n.p.y,
l = Math.sqrt(dx * dx + dy * dy),
d = r1 + radius(n.p);
if (l < d) {
var k = (l - d) / l * .5;
dx *= k;
dy *= k;
p.x -= dx;
p.y -= dy;
n.p.x += dx;
n.p.y += dy;
}
}
}
/**
* Applies this constraint to the specified particles.
*
* @function
* @name pv.Constraint.collision.prototype.apply
* @param {pv.Particle} particles particles to which to apply this constraint.
* @param {pv.Quadtree} q a quadtree for spatial acceleration.
*/
constraint.apply = function(particles, q) {
var p, r, max = -Infinity;
for (p = particles; p; p = p.next) {
r = radius(p);
if (r > max) max = r;
}
for (var i = 0; i < n; i++) {
for (p = particles; p; p = p.next) {
r = (r1 = radius(p)) + max;
px1 = p.x - r;
px2 = p.x + r;
py1 = p.y - r;
py2 = p.y + r;
constrain(q.root, p, q.xMin, q.yMin, q.xMax, q.yMax);
}
}
};
return constraint;
};
/**
* Constructs a default position constraint using the <tt>fix</tt> attribute.
* An optional position function can be specified to determine how the fixed
* position per-particle is determined.
*
* @class Constraints particles to a fixed position. The fixed position per
* particle is determined using a given position function, which defaults to
* <tt>function(d) d.fix</tt>.
*
* <p>If the position function returns null, then no position constraint is
* applied to the given particle. Otherwise, the particle's position is set to
* the returned position, as expressed by a {@link pv.Vector}. (Note: the
* position does not need to be an instance of <tt>pv.Vector</tt>, but simply an
* object with <tt>x</tt> and <tt>y</tt> attributes.)
*
* <p>This constraint also supports a configurable alpha parameter, which
* defaults to 1. If the alpha parameter is in the range [0,1], then rather than
* setting the particle's new position directly to the position returned by the
* supplied position function, the particle's position is interpolated towards
* the fixed position. This results is a smooth (exponential) drift towards the
* fixed position, which can increase the stability of the physics simulation.
* In addition, the alpha parameter can be decayed over time, relaxing the
* position constraint, which helps to stabilize on an optimal solution.
*
* @param {function} [f] the position function.
*/
pv.Constraint.position = function(f) {
var a = 1, // default alpha
constraint = {};
if (!arguments.length) /** @ignore */ f = function(p) { return p.fix; };
/**
* Sets or gets the alpha parameter for position interpolation. If the alpha
* parameter is in the range [0,1], then rather than setting the particle's
* new position directly to the position returned by the supplied position
* function, the particle's position is interpolated towards the fixed
* position.
*
* @function
* @name pv.Constraint.position.prototype.alpha
* @param {number} x the new alpha parameter, in the range [0,1].
* @returns {pv.Constraint.position} this.
*/
constraint.alpha = function(x) {
if (arguments.length) {
a = Number(x);
return constraint;
}
return a;
};
/**
* Applies this constraint to the specified particles.
*
* @function
* @name pv.Constraint.position.prototype.apply
* @param {pv.Particle} particles particles to which to apply this constraint.
*/
constraint.apply = function(particles) {
for (var p = particles; p; p = p.next) {
var v = f(p);
if (v) {
p.x += (v.x - p.x) * a;
p.y += (v.y - p.y) * a;
p.fx = p.fy = p.vx = p.vy = 0;
}
}
};
return constraint;
};
/**
* Constructs a new bound constraint. Before the constraint can be used, the
* {@link #x} and {@link #y} methods must be call to specify the bounds.
*
* @class Constrains particles to within fixed rectangular bounds. For example,
* this constraint can be used to constrain particles in a physics simulation
* within the bounds of an enclosing panel.
*
* <p>Note that the current implementation treats particles as points, with no
* area. If the particles are rendered as dots, be sure to include some
* additional padding to inset the bounds such that the edges of the dots do not
* get clipped by the panel bounds. If the particles have different radii, this
* constraint would need to be extended using a radius function, similar to
* {@link pv.Constraint.collision}.
*
* @see pv.Layout.Force
* @extends pv.Constraint
*/
pv.Constraint.bound = function() {
var constraint = {},
x,
y;
/**
* Sets or gets the bounds on the x-coordinate.
*
* @function
* @name pv.Constraint.bound.prototype.x
* @param {number} min the minimum allowed x-coordinate.
* @param {number} max the maximum allowed x-coordinate.
* @returns {pv.Constraint.bound} this.
*/
constraint.x = function(min, max) {
if (arguments.length) {
x = {min: Math.min(min, max), max: Math.max(min, max)};
return this;
}
return x;
};
/**
* Sets or gets the bounds on the y-coordinate.
*
* @function
* @name pv.Constraint.bound.prototype.y
* @param {number} min the minimum allowed y-coordinate.
* @param {number} max the maximum allowed y-coordinate.
* @returns {pv.Constraint.bound} this.
*/
constraint.y = function(min, max) {
if (arguments.length) {
y = {min: Math.min(min, max), max: Math.max(min, max)};
return this;
}
return y;
};
/**
* Applies this constraint to the specified particles.
*
* @function
* @name pv.Constraint.bound.prototype.apply
* @param {pv.Particle} particles particles to which to apply this constraint.
*/
constraint.apply = function(particles) {
if (x) for (var p = particles; p; p = p.next) {
p.x = p.x < x.min ? x.min : (p.x > x.max ? x.max : p.x);
}
if (y) for (var p = particles; p; p = p.next) {
p.y = p.y < y.min ? y.min : (p.y > y.max ? y.max : p.y);
}
};
return constraint;
};
/**
* Constructs a new, empty layout with default properties. Layouts are not
* typically constructed directly; instead, a concrete subclass is added to an
* existing panel via {@link pv.Mark#add}.
*
* @class Represents an abstract layout, encapsulating a visualization technique
* such as a streamgraph or treemap. Layouts are themselves containers,
* extending from {@link pv.Panel}, and defining a set of mark prototypes as
* children. These mark prototypes provide default properties that together
* implement the given visualization technique.
*
* <p>Layouts do not initially contain any marks; any exported marks (such as a
* network layout's <tt>link</tt> and <tt>node</tt>) are intended to be used as
* prototypes. By adding a concrete mark, such as a {@link pv.Bar}, to the
* appropriate mark prototype, the mark is added to the layout and inherits the
* given properties. This approach allows further customization of the layout,
* either by choosing a different mark type to add, or more simply by overriding
* some of the layout's defined properties.
*
* <p>Each concrete layout, such as treemap or circle-packing, has different
* behavior and may export different mark prototypes, depending on what marks
* are typically needed to render the desired visualization. Therefore it is
* important to understand how each layout is structured, such that the provided
* mark prototypes are used appropriately.
*
* <p>In addition to the mark prototypes, layouts may define custom properties
* that affect the overall behavior of the layout. For example, a treemap layout
* might use a property to specify which layout algorithm to use. These
* properties are just like other mark properties, and can be defined as
* constants or as functions. As with panels, the data property can be used to
* replicate layouts, and properties can be defined to in terms of layout data.
*
* @extends pv.Panel
*/
pv.Layout = function() {
pv.Panel.call(this);
};
pv.Layout.prototype = pv.extend(pv.Panel);
/**
* @private Defines a local property with the specified name and cast. Note that
* although the property method is only defined locally, the cast function is
* global, which is necessary since properties are inherited!
*
* @param {string} name the property name.
* @param {function} [cast] the cast function for this property.
*/
pv.Layout.prototype.property = function(name, cast) {
if (!this.hasOwnProperty("properties")) {
this.properties = pv.extend(this.properties);
}
this.properties[name] = true;
this.propertyMethod(name, false, pv.Mark.cast[name] = cast);
return this;
};
/**
* Constructs a new, empty network layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Represents an abstract layout for network diagrams. This class
* provides the basic structure for both node-link diagrams (such as
* force-directed graph layout) and space-filling network diagrams (such as
* sunbursts and treemaps). Note that "network" here is a general term that
* includes hierarchical structures; a tree is represented using links from
* child to parent.
*
* <p>Network layouts require the graph data structure to be defined using two
* properties:<ul>
*
* <li><tt>nodes</tt> - an array of objects representing nodes. Objects in this
* array must conform to the {@link pv.Layout.Network.Node} interface; which is
* to say, be careful to avoid naming collisions with automatic attributes such
* as <tt>index</tt> and <tt>linkDegree</tt>. If the nodes property is defined
* as an array of primitives, such as numbers or strings, these primitives are
* automatically wrapped in an object; the resulting object's <tt>nodeValue</tt>
* attribute points to the original primitive value.
*
* <p><li><tt>links</tt> - an array of objects representing links. Objects in
* this array must conform to the {@link pv.Layout.Network.Link} interface; at a
* minimum, either <tt>source</tt> and <tt>target</tt> indexes or
* <tt>sourceNode</tt> and <tt>targetNode</tt> references must be set. Note that
* if the links property is defined after the nodes property, the links can be
* defined in terms of <tt>this.nodes()</tt>.
*
* </ul>
*
* <p>Three standard mark prototypes are provided:<ul>
*
* <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Dot}. The node
* mark is added directly to the layout, with the data property defined via the
* layout's <tt>nodes</tt> property. Properties such as <tt>strokeStyle</tt> and
* <tt>fillStyle</tt> can be overridden to compute properties from node data
* dynamically.
*
* <p><li><tt>link</tt> - for rendering links; typically a {@link pv.Line}. The
* link mark is added to a child panel, whose data property is defined as
* layout's <tt>links</tt> property. The link's data property is then a
* two-element array of the source node and target node. Thus, poperties such as
* <tt>strokeStyle</tt> and <tt>fillStyle</tt> can be overridden to compute
* properties from either the node data (the first argument) or the link data
* (the second argument; the parent panel data) dynamically.
*
* <p><li><tt>label</tt> - for rendering node labels; typically a
* {@link pv.Label}. The label mark is added directly to the layout, with the
* data property defined via the layout's <tt>nodes</tt> property. Properties
* such as <tt>strokeStyle</tt> and <tt>fillStyle</tt> can be overridden to
* compute properties from node data dynamically.
*
* </ul>Note that some network implementations may not support all three
* standard mark prototypes; for example, space-filling hierarchical layouts
* typically do not use a <tt>link</tt> prototype, as the parent-child links are
* implied by the structure of the space-filling <tt>node</tt> marks. Check the
* specific network layout for implementation details.
*
* <p>Network layout properties, including <tt>nodes</tt> and <tt>links</tt>,
* are typically cached rather than re-evaluated with every call to render. This
* is a performance optimization, as network layout algorithms can be
* expensive. If the network structure changes, call {@link #reset} to clear the
* cache before rendering. Note that although the network layout properties are
* cached, child mark properties, such as the marks used to render the nodes and
* links, <i>are not</i>. Therefore, non-structural changes to the network
* layout, such as changing the color of a mark on mouseover, do not need to
* reset the layout.
*
* @see pv.Layout.Hierarchy
* @see pv.Layout.Force
* @see pv.Layout.Matrix
* @see pv.Layout.Arc
* @see pv.Layout.Rollup
* @extends pv.Layout
*/
pv.Layout.Network = function() {
pv.Layout.call(this);
var that = this;
/* @private Version tracking to cache layout state, improving performance. */
this.$id = pv.id();
/**
* The node prototype. This prototype is intended to be used with a Dot mark
* in conjunction with the link prototype.
*
* @type pv.Mark
* @name pv.Layout.Network.prototype.node
*/
(this.node = new pv.Mark()
.data(function() { return that.nodes(); })
.strokeStyle("#1f77b4")
.fillStyle("#fff")
.left(function(n) { return n.x; })
.top(function(n) { return n.y; })).parent = this;
/**
* The link prototype, which renders edges between source nodes and target
* nodes. This prototype is intended to be used with a Line mark in
* conjunction with the node prototype.
*
* @type pv.Mark
* @name pv.Layout.Network.prototype.link
*/
this.link = new pv.Mark()
.extend(this.node)
.data(function(p) { return [p.sourceNode, p.targetNode]; })
.fillStyle(null)
.lineWidth(function(d, p) { return p.linkValue * 1.5; })
.strokeStyle("rgba(0,0,0,.2)");
this.link.add = function(type) {
return that.add(pv.Panel)
.data(function() { return that.links(); })
.add(type)
.extend(this);
};
/**
* The node label prototype, which renders the node name adjacent to the node.
* This prototype is provided as an alternative to using the anchor on the
* node mark; it is primarily intended to be used with radial node-link
* layouts, since it provides a convenient mechanism to set the text angle.
*
* @type pv.Mark
* @name pv.Layout.Network.prototype.label
*/
(this.label = new pv.Mark()
.extend(this.node)
.textMargin(7)
.textBaseline("middle")
.text(function(n) { return n.nodeName || n.nodeValue; })
.textAngle(function(n) {
var a = n.midAngle;
return pv.Wedge.upright(a) ? a : (a + Math.PI);
})
.textAlign(function(n) {
return pv.Wedge.upright(n.midAngle) ? "left" : "right";
})).parent = this;
};
/**
* @class Represents a node in a network layout. There is no explicit
* constructor; this class merely serves to document the attributes that are
* used on nodes in network layouts. (Note that hierarchical nodes place
* additional requirements on node representation, vis {@link pv.Dom.Node}.)
*
* @see pv.Layout.Network
* @name pv.Layout.Network.Node
*/
/**
* The node index, zero-based. This attribute is populated automatically based
* on the index in the array returned by the <tt>nodes</tt> property.
*
* @type number
* @name pv.Layout.Network.Node.prototype.index
*/
/**
* The link degree; the sum of link values for all incoming and outgoing links.
* This attribute is populated automatically.
*
* @type number
* @name pv.Layout.Network.Node.prototype.linkDegree
*/
/**
* The node name; optional. If present, this attribute will be used to provide
* the text for node labels. If not present, the label text will fallback to the
* <tt>nodeValue</tt> attribute.
*
* @type string
* @name pv.Layout.Network.Node.prototype.nodeName
*/
/**
* The node value; optional. If present, and no <tt>nodeName</tt> attribute is
* present, the node value will be used as the label text. This attribute is
* also automatically populated if the nodes are specified as an array of
* primitives, such as strings or numbers.
*
* @type object
* @name pv.Layout.Network.Node.prototype.nodeValue
*/
/**
* @class Represents a link in a network layout. There is no explicit
* constructor; this class merely serves to document the attributes that are
* used on links in network layouts. For hierarchical layouts, this class is
* used to represent the parent-child links.
*
* @see pv.Layout.Network
* @name pv.Layout.Network.Link
*/
/**
* The link value, or weight; optional. If not specified (or not a number), the
* default value of 1 is used.
*
* @type number
* @name pv.Layout.Network.Link.prototype.linkValue
*/
/**
* The link's source node. If not set, this value will be derived from the
* <tt>source</tt> attribute index.
*
* @type pv.Layout.Network.Node
* @name pv.Layout.Network.Link.prototype.sourceNode
*/
/**
* The link's target node. If not set, this value will be derived from the
* <tt>target</tt> attribute index.
*
* @type pv.Layout.Network.Node
* @name pv.Layout.Network.Link.prototype.targetNode
*/
/**
* Alias for <tt>sourceNode</tt>, as expressed by the index of the source node.
* This attribute is not populated automatically, but may be used as a more
* convenient identification of the link's source, for example in a static JSON
* representation.
*
* @type number
* @name pv.Layout.Network.Link.prototype.source
*/
/**
* Alias for <tt>targetNode</tt>, as expressed by the index of the target node.
* This attribute is not populated automatically, but may be used as a more
* convenient identification of the link's target, for example in a static JSON
* representation.
*
* @type number
* @name pv.Layout.Network.Link.prototype.target
*/
/**
* Alias for <tt>linkValue</tt>. This attribute is not populated automatically,
* but may be used instead of the <tt>linkValue</tt> attribute when specifying
* links.
*
* @type number
* @name pv.Layout.Network.Link.prototype.value
*/
/** @private Transform nodes and links on cast. */
pv.Layout.Network.prototype = pv.extend(pv.Layout)
.property("nodes", function(v) {
return v.map(function(d, i) {
if (typeof d != "object") d = {nodeValue: d};
d.index = i;
return d;
});
})
.property("links", function(v) {
return v.map(function(d) {
if (isNaN(d.linkValue)) d.linkValue = isNaN(d.value) ? 1 : d.value;
return d;
});
});
/**
* Resets the cache, such that changes to layout property definitions will be
* visible on subsequent render. Unlike normal marks (and normal layouts),
* properties associated with network layouts are not automatically re-evaluated
* on render; the properties are cached, and any expensive layout algorithms are
* only run after the layout is explicitly reset.
*
* @returns {pv.Layout.Network} this.
*/
pv.Layout.Network.prototype.reset = function() {
this.$id = pv.id();
return this;
};
/** @private Skip evaluating properties if cached. */
pv.Layout.Network.prototype.buildProperties = function(s, properties) {
if ((s.$id || 0) < this.$id) {
pv.Layout.prototype.buildProperties.call(this, s, properties);
}
};
/** @private Compute link degrees; map source and target indexes to nodes. */
pv.Layout.Network.prototype.buildImplied = function(s) {
pv.Layout.prototype.buildImplied.call(this, s);
if (s.$id >= this.$id) return true;
s.$id = this.$id;
s.nodes.forEach(function(d) {
d.linkDegree = 0;
});
s.links.forEach(function(d) {
var v = d.linkValue;
(d.sourceNode || (d.sourceNode = s.nodes[d.source])).linkDegree += v;
(d.targetNode || (d.targetNode = s.nodes[d.target])).linkDegree += v;
});
};
/**
* Constructs a new, empty hierarchy layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Represents an abstract layout for hierarchy diagrams. This class is a
* specialization of {@link pv.Layout.Network}, providing the basic structure
* for both hierarchical node-link diagrams (such as Reingold-Tilford trees) and
* space-filling hierarchy diagrams (such as sunbursts and treemaps).
*
* <p>Unlike general network layouts, the <tt>links</tt> property need not be
* defined explicitly. Instead, the links are computed implicitly from the
* <tt>parentNode</tt> attribute of the node objects, as defined by the
* <tt>nodes</tt> property. This implementation is also available as
* {@link #links}, for reuse with non-hierarchical layouts; for example, to
* render a tree using force-directed layout.
*
* <p>Correspondingly, the <tt>nodes</tt> property is represented as a union of
* {@link pv.Layout.Network.Node} and {@link pv.Dom.Node}. To construct a node
* hierarchy from a simple JSON map, use the {@link pv.Dom} operator; this
* operator also provides an easy way to sort nodes before passing them to the
* layout.
*
* <p>For more details on how to use this layout, see
* {@link pv.Layout.Network}.
*
* @see pv.Layout.Cluster
* @see pv.Layout.Partition
* @see pv.Layout.Tree
* @see pv.Layout.Treemap
* @see pv.Layout.Indent
* @see pv.Layout.Pack
* @extends pv.Layout.Network
*/
pv.Layout.Hierarchy = function() {
pv.Layout.Network.call(this);
this.link.strokeStyle("#ccc");
};
pv.Layout.Hierarchy.prototype = pv.extend(pv.Layout.Network);
/** @private Compute the implied links. (Links are null by default.) */
pv.Layout.Hierarchy.prototype.buildImplied = function(s) {
if (!s.links) s.links = pv.Layout.Hierarchy.links.call(this);
pv.Layout.Network.prototype.buildImplied.call(this, s);
};
/** The implied links; computes links using the <tt>parentNode</tt> attribute. */
pv.Layout.Hierarchy.links = function() {
return this.nodes()
.filter(function(n) { return n.parentNode; })
.map(function(n) {
return {
sourceNode: n,
targetNode: n.parentNode,
linkValue: 1
};
});
};
/** @private Provides standard node-link layout based on breadth & depth. */
pv.Layout.Hierarchy.NodeLink = {
/** @private */
buildImplied: function(s) {
var nodes = s.nodes,
orient = s.orient,
horizontal = /^(top|bottom)$/.test(orient),
w = s.width,
h = s.height;
/* Compute default inner and outer radius. */
if (orient == "radial") {
var ir = s.innerRadius, or = s.outerRadius;
if (ir == null) ir = 0;
if (or == null) or = Math.min(w, h) / 2;
}
/** @private Returns the radius of the given node. */
function radius(n) {
return n.parentNode ? (n.depth * (or - ir) + ir) : 0;
}
/** @private Returns the angle of the given node. */
function midAngle(n) {
return (n.parentNode ? (n.breadth - .25) * 2 * Math.PI : 0);
}
/** @private */
function x(n) {
switch (orient) {
case "left": return n.depth * w;
case "right": return w - n.depth * w;
case "top": return n.breadth * w;
case "bottom": return w - n.breadth * w;
case "radial": return w / 2 + radius(n) * Math.cos(n.midAngle);
}
}
/** @private */
function y(n) {
switch (orient) {
case "left": return n.breadth * h;
case "right": return h - n.breadth * h;
case "top": return n.depth * h;
case "bottom": return h - n.depth * h;
case "radial": return h / 2 + radius(n) * Math.sin(n.midAngle);
}
}
for (var i = 0; i < nodes.length; i++) {
var n = nodes[i];
n.midAngle = orient == "radial" ? midAngle(n)
: horizontal ? Math.PI / 2 : 0;
n.x = x(n);
n.y = y(n);
if (n.firstChild) n.midAngle += Math.PI;
}
}
};
/** @private Provides standard space-filling layout based on breadth & depth. */
pv.Layout.Hierarchy.Fill = {
/** @private */
constructor: function() {
this.node
.strokeStyle("#fff")
.fillStyle("#ccc")
.width(function(n) { return n.dx; })
.height(function(n) { return n.dy; })
.innerRadius(function(n) { return n.innerRadius; })
.outerRadius(function(n) { return n.outerRadius; })
.startAngle(function(n) { return n.startAngle; })
.angle(function(n) { return n.angle; });
this.label
.textAlign("center")
.left(function(n) { return n.x + (n.dx / 2); })
.top(function(n) { return n.y + (n.dy / 2); });
/* Hide unsupported link. */
delete this.link;
},
/** @private */
buildImplied: function(s) {
var nodes = s.nodes,
orient = s.orient,
horizontal = /^(top|bottom)$/.test(orient),
w = s.width,
h = s.height,
depth = -nodes[0].minDepth;
/* Compute default inner and outer radius. */
if (orient == "radial") {
var ir = s.innerRadius, or = s.outerRadius;
if (ir == null) ir = 0;
if (ir) depth *= 2; // use full depth step for root
if (or == null) or = Math.min(w, h) / 2;
}
/** @private Scales the specified depth for a space-filling layout. */
function scale(d, depth) {
return (d + depth) / (1 + depth);
}
/** @private */
function x(n) {
switch (orient) {
case "left": return scale(n.minDepth, depth) * w;
case "right": return (1 - scale(n.maxDepth, depth)) * w;
case "top": return n.minBreadth * w;
case "bottom": return (1 - n.maxBreadth) * w;
case "radial": return w / 2;
}
}
/** @private */
function y(n) {
switch (orient) {
case "left": return n.minBreadth * h;
case "right": return (1 - n.maxBreadth) * h;
case "top": return scale(n.minDepth, depth) * h;
case "bottom": return (1 - scale(n.maxDepth, depth)) * h;
case "radial": return h / 2;
}
}
/** @private */
function dx(n) {
switch (orient) {
case "left":
case "right": return (n.maxDepth - n.minDepth) / (1 + depth) * w;
case "top":
case "bottom": return (n.maxBreadth - n.minBreadth) * w;
case "radial": return n.parentNode ? (n.innerRadius + n.outerRadius) * Math.cos(n.midAngle) : 0;
}
}
/** @private */
function dy(n) {
switch (orient) {
case "left":
case "right": return (n.maxBreadth - n.minBreadth) * h;
case "top":
case "bottom": return (n.maxDepth - n.minDepth) / (1 + depth) * h;
case "radial": return n.parentNode ? (n.innerRadius + n.outerRadius) * Math.sin(n.midAngle) : 0;
}
}
/** @private */
function innerRadius(n) {
return Math.max(0, scale(n.minDepth, depth / 2)) * (or - ir) + ir;
}
/** @private */
function outerRadius(n) {
return scale(n.maxDepth, depth / 2) * (or - ir) + ir;
}
/** @private */
function startAngle(n) {
return (n.parentNode ? n.minBreadth - .25 : 0) * 2 * Math.PI;
}
/** @private */
function angle(n) {
return (n.parentNode ? n.maxBreadth - n.minBreadth : 1) * 2 * Math.PI;
}
for (var i = 0; i < nodes.length; i++) {
var n = nodes[i];
n.x = x(n);
n.y = y(n);
if (orient == "radial") {
n.innerRadius = innerRadius(n);
n.outerRadius = outerRadius(n);
n.startAngle = startAngle(n);
n.angle = angle(n);
n.midAngle = n.startAngle + n.angle / 2;
} else {
n.midAngle = horizontal ? -Math.PI / 2 : 0;
}
n.dx = dx(n);
n.dy = dy(n);
}
}
};
/**
* Constructs a new, empty grid layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a grid layout with regularly-sized rows and columns. The
* number of rows and columns are determined from their respective
* properties. For example, the 2&times;3 array:
*
* <pre>1 2 3
* 4 5 6</pre>
*
* can be represented using the <tt>rows</tt> property as:
*
* <pre>[[1, 2, 3], [4, 5, 6]]</pre>
*
* If your data is in column-major order, you can equivalently use the
* <tt>columns</tt> property. If the <tt>rows</tt> property is an array, it
* takes priority over the <tt>columns</tt> property. The data is implicitly
* transposed, as if the {@link pv.transpose} operator were applied.
*
* <p>This layout exports a single <tt>cell</tt> mark prototype, which is
* intended to be used with a bar, panel, layout, or subclass thereof. The data
* property of the cell prototype is defined as the elements in the array. For
* example, if the array is a two-dimensional array of values in the range
* [0,1], a simple heatmap can be generated as:
*
* <pre>vis.add(pv.Layout.Grid)
* .rows(arrays)
* .cell.add(pv.Bar)
* .fillStyle(pv.ramp("white", "black"))</pre>
*
* The grid subdivides the full width and height of the parent panel into equal
* rectangles. Note, however, that for large, interactive, or animated heatmaps,
* you may see significantly better performance through dynamic {@link pv.Image}
* generation.
*
* <p>For irregular grids using value-based spatial partitioning, see {@link
* pv.Layout.Treemap}.
*
* @extends pv.Layout
*/
pv.Layout.Grid = function() {
pv.Layout.call(this);
var that = this;
/**
* The cell prototype. This prototype is intended to be used with a bar,
* panel, or layout (or subclass thereof) to render the grid cells.
*
* @type pv.Mark
* @name pv.Layout.Grid.prototype.cell
*/
(this.cell = new pv.Mark()
.data(function() {
return that.scene[that.index].$grid;
})
.width(function() {
return that.width() / that.cols();
})
.height(function() {
return that.height() / that.rows();
})
.left(function() {
return this.width() * (this.index % that.cols());
})
.top(function() {
return this.height() * Math.floor(this.index / that.cols());
})).parent = this;
};
pv.Layout.Grid.prototype = pv.extend(pv.Layout)
.property("rows")
.property("cols");
/**
* Default properties for grid layouts. By default, there is one row and one
* column, and the data is the propagated to the child cell.
*
* @type pv.Layout.Grid
*/
pv.Layout.Grid.prototype.defaults = new pv.Layout.Grid()
.extend(pv.Layout.prototype.defaults)
.rows(1)
.cols(1);
/** @private */
pv.Layout.Grid.prototype.buildImplied = function(s) {
pv.Layout.prototype.buildImplied.call(this, s);
var r = s.rows, c = s.cols;
if (typeof c == "object") r = pv.transpose(c);
if (typeof r == "object") {
s.$grid = pv.blend(r);
s.rows = r.length;
s.cols = r[0] ? r[0].length : 0;
} else {
s.$grid = pv.repeat([s.data], r * c);
}
};
/**
* The number of rows. This property can also be specified as the data in
* row-major order; in this case, the rows property is implicitly set to the
* length of the array, and the cols property is set to the length of the first
* element in the array.
*
* @type number
* @name pv.Layout.Grid.prototype.rows
*/
/**
* The number of columns. This property can also be specified as the data in
* column-major order; in this case, the cols property is implicitly set to the
* length of the array, and the rows property is set to the length of the first
* element in the array.
*
* @type number
* @name pv.Layout.Grid.prototype.cols
*/
/**
* Constructs a new, empty stack layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a layout for stacked visualizations, ranging from simple
* stacked bar charts to more elaborate "streamgraphs" composed of stacked
* areas. Stack layouts uses length as a visual encoding, as opposed to
* position, as the layers do not share an aligned axis.
*
* <p>Marks can be stacked vertically or horizontally. For example,
*
* <pre>vis.add(pv.Layout.Stack)
* .layers([[1, 1.2, 1.7, 1.5, 1.7],
* [.5, 1, .8, 1.1, 1.3],
* [.2, .5, .8, .9, 1]])
* .x(function() this.index * 35)
* .y(function(d) d * 40)
* .layer.add(pv.Area);</pre>
*
* specifies a vertically-stacked area chart, using the default "bottom-left"
* orientation with "zero" offset. This visualization can be easily changed into
* a streamgraph using the "wiggle" offset, which attempts to minimize change in
* slope weighted by layer thickness. See the {@link #offset} property for more
* supported streamgraph algorithms.
*
* <p>In the simplest case, the layer data can be specified as a two-dimensional
* array of numbers. The <tt>x</tt> and <tt>y</tt> psuedo-properties are used to
* define the thickness of each layer at the given position, respectively; in
* the above example of the "bottom-left" orientation, the <tt>x</tt> and
* <tt>y</tt> psuedo-properties are equivalent to the <tt>left</tt> and
* <tt>height</tt> properties that you might use if you implemented a stacked
* area by hand.
*
* <p>The advantage of using the stack layout is that the baseline, i.e., the
* <tt>bottom</tt> property is computed automatically using the specified offset
* algorithm. In addition, the order of layers can be computed using a built-in
* algorithm via the <tt>order</tt> property.
*
* <p>With the exception of the "expand" <tt>offset</tt>, the stack layout does
* not perform any automatic scaling of data; the values returned from
* <tt>x</tt> and <tt>y</tt> specify pixel sizes. To simplify scaling math, use
* this layout in conjunction with {@link pv.Scale.linear} or similar.
*
* <p>In other cases, the <tt>values</tt> psuedo-property can be used to define
* the data more flexibly. As with a typical panel &amp; area, the
* <tt>layers</tt> property corresponds to the data in the enclosing panel,
* while the <tt>values</tt> psuedo-property corresponds to the data for the
* area within the panel. For example, given an array of data values:
*
* <pre>var crimea = [
* { date: "4/1854", wounds: 0, other: 110, disease: 110 },
* { date: "5/1854", wounds: 0, other: 95, disease: 105 },
* { date: "6/1854", wounds: 0, other: 40, disease: 95 },
* ...</pre>
*
* and a corresponding array of series names:
*
* <pre>var causes = ["wounds", "other", "disease"];</pre>
*
* Separate layers can be defined for each cause like so:
*
* <pre>vis.add(pv.Layout.Stack)
* .layers(causes)
* .values(crimea)
* .x(function(d) x(d.date))
* .y(function(d, p) y(d[p]))
* .layer.add(pv.Area)
* ...</pre>
*
* As with the panel &amp; area case, the datum that is passed to the
* psuedo-properties <tt>x</tt> and <tt>y</tt> are the values (an element in
* <tt>crimea</tt>); the second argument is the layer data (a string in
* <tt>causes</tt>). Additional arguments specify the data of enclosing panels,
* if any.
*
* @extends pv.Layout
*/
pv.Layout.Stack = function() {
pv.Layout.call(this);
var that = this,
/** @ignore */ none = function() { return null; },
prop = {t: none, l: none, r: none, b: none, w: none, h: none},
values,
buildImplied = that.buildImplied;
/** @private Proxy the given property on the layer. */
function proxy(name) {
return function() {
return prop[name](this.parent.index, this.index);
};
}
/** @private Compute the layout! */
this.buildImplied = function(s) {
buildImplied.call(this, s);
var data = s.layers,
n = data.length,
m,
orient = s.orient,
horizontal = /^(top|bottom)\b/.test(orient),
h = this.parent[horizontal ? "height" : "width"](),
x = [],
y = [],
dy = [];
/*
* Iterate over the data, evaluating the values, x and y functions. The
* context in which the x and y psuedo-properties are evaluated is a
* pseudo-mark that is a grandchild of this layout.
*/
var stack = pv.Mark.stack, o = {parent: {parent: this}};
stack.unshift(null);
values = [];
for (var i = 0; i < n; i++) {
dy[i] = [];
y[i] = [];
o.parent.index = i;
stack[0] = data[i];
values[i] = this.$values.apply(o.parent, stack);
if (!i) m = values[i].length;
stack.unshift(null);
for (var j = 0; j < m; j++) {
stack[0] = values[i][j];
o.index = j;
if (!i) x[j] = this.$x.apply(o, stack);
dy[i][j] = this.$y.apply(o, stack);
}
stack.shift();
}
stack.shift();
/* order */
var index;
switch (s.order) {
case "inside-out": {
var max = dy.map(function(v) { return pv.max.index(v); }),
map = pv.range(n).sort(function(a, b) { return max[a] - max[b]; }),
sums = dy.map(function(v) { return pv.sum(v); }),
top = 0,
bottom = 0,
tops = [],
bottoms = [];
for (var i = 0; i < n; i++) {
var j = map[i];
if (top < bottom) {
top += sums[j];
tops.push(j);
} else {
bottom += sums[j];
bottoms.push(j);
}
}
index = bottoms.reverse().concat(tops);
break;
}
case "reverse": index = pv.range(n - 1, -1, -1); break;
default: index = pv.range(n); break;
}
/* offset */
switch (s.offset) {
case "silohouette": {
for (var j = 0; j < m; j++) {
var o = 0;
for (var i = 0; i < n; i++) o += dy[i][j];
y[index[0]][j] = (h - o) / 2;
}
break;
}
case "wiggle": {
var o = 0;
for (var i = 0; i < n; i++) o += dy[i][0];
y[index[0]][0] = o = (h - o) / 2;
for (var j = 1; j < m; j++) {
var s1 = 0, s2 = 0, dx = x[j] - x[j - 1];
for (var i = 0; i < n; i++) s1 += dy[i][j];
for (var i = 0; i < n; i++) {
var s3 = (dy[index[i]][j] - dy[index[i]][j - 1]) / (2 * dx);
for (var k = 0; k < i; k++) {
s3 += (dy[index[k]][j] - dy[index[k]][j - 1]) / dx;
}
s2 += s3 * dy[index[i]][j];
}
y[index[0]][j] = o -= s1 ? s2 / s1 * dx : 0;
}
break;
}
case "expand": {
for (var j = 0; j < m; j++) {
y[index[0]][j] = 0;
var k = 0;
for (var i = 0; i < n; i++) k += dy[i][j];
if (k) {
k = h / k;
for (var i = 0; i < n; i++) dy[i][j] *= k;
} else {
k = h / n;
for (var i = 0; i < n; i++) dy[i][j] = k;
}
}
break;
}
default: {
for (var j = 0; j < m; j++) y[index[0]][j] = 0;
break;
}
}
/* Propagate the offset to the other series. */
for (var j = 0; j < m; j++) {
var o = y[index[0]][j];
for (var i = 1; i < n; i++) {
o += dy[index[i - 1]][j];
y[index[i]][j] = o;
}
}
/* Find the property definitions for dynamic substitution. */
var i = orient.indexOf("-"),
pdy = horizontal ? "h" : "w",
px = i < 0 ? (horizontal ? "l" : "b") : orient.charAt(i + 1),
py = orient.charAt(0);
for (var p in prop) prop[p] = none;
prop[px] = function(i, j) { return x[j]; };
prop[py] = function(i, j) { return y[i][j]; };
prop[pdy] = function(i, j) { return dy[i][j]; };
};
/**
* The layer prototype. This prototype is intended to be used with an area,
* bar or panel mark (or subclass thereof). Other mark types may be possible,
* though note that the stack layout is not currently designed to support
* radial stacked visualizations using wedges.
*
* <p>The layer is not a direct child of the stack layout; a hidden panel is
* used to replicate layers.
*
* @type pv.Mark
* @name pv.Layout.Stack.prototype.layer
*/
this.layer = new pv.Mark()
.data(function() { return values[this.parent.index]; })
.top(proxy("t"))
.left(proxy("l"))
.right(proxy("r"))
.bottom(proxy("b"))
.width(proxy("w"))
.height(proxy("h"));
this.layer.add = function(type) {
return that.add(pv.Panel)
.data(function() { return that.layers(); })
.add(type)
.extend(this);
};
};
pv.Layout.Stack.prototype = pv.extend(pv.Layout)
.property("orient", String)
.property("offset", String)
.property("order", String)
.property("layers");
/**
* Default properties for stack layouts. The default orientation is
* "bottom-left", the default offset is "zero", and the default layers is
* <tt>[[]]</tt>.
*
* @type pv.Layout.Stack
*/
pv.Layout.Stack.prototype.defaults = new pv.Layout.Stack()
.extend(pv.Layout.prototype.defaults)
.orient("bottom-left")
.offset("zero")
.layers([[]]);
/** @private */
pv.Layout.Stack.prototype.$x
= /** @private */ pv.Layout.Stack.prototype.$y
= function() { return 0; };
/**
* The x psuedo-property; determines the position of the value within the layer.
* This typically corresponds to the independent variable. For example, with the
* default "bottom-left" orientation, this function defines the "left" property.
*
* @param {function} f the x function.
* @returns {pv.Layout.Stack} this.
*/
pv.Layout.Stack.prototype.x = function(f) {
/** @private */ this.$x = pv.functor(f);
return this;
};
/**
* The y psuedo-property; determines the thickness of the layer at the given
* value. This typically corresponds to the dependent variable. For example,
* with the default "bottom-left" orientation, this function defines the
* "height" property.
*
* @param {function} f the y function.
* @returns {pv.Layout.Stack} this.
*/
pv.Layout.Stack.prototype.y = function(f) {
/** @private */ this.$y = pv.functor(f);
return this;
};
/** @private The default value function; identity. */
pv.Layout.Stack.prototype.$values = pv.identity;
/**
* The values function; determines the values for a given layer. The default
* value is the identity function, which assumes that the layers property is
* specified as a two-dimensional (i.e., nested) array.
*
* @param {function} f the values function.
* @returns {pv.Layout.Stack} this.
*/
pv.Layout.Stack.prototype.values = function(f) {
this.$values = pv.functor(f);
return this;
};
/**
* The layer data in row-major order. The value of this property is typically a
* two-dimensional (i.e., nested) array, but any array can be used, provided the
* values psuedo-property is defined accordingly.
*
* @type array[]
* @name pv.Layout.Stack.prototype.layers
*/
/**
* The layer orientation. The following values are supported:<ul>
*
* <li>bottom-left == bottom
* <li>bottom-right
* <li>top-left == top
* <li>top-right
* <li>left-top
* <li>left-bottom == left
* <li>right-top
* <li>right-bottom == right
*
* </ul>. The default value is "bottom-left", which means that the layers will
* be built from the bottom-up, and the values within layers will be laid out
* from left-to-right.
*
* <p>Note that with non-zero baselines, some orientations may give similar
* results. For example, offset("silohouette") centers the layers, resulting in
* a streamgraph. Thus, the orientations "bottom-left" and "top-left" will
* produce similar results, differing only in the layer order.
*
* @type string
* @name pv.Layout.Stack.prototype.orient
*/
/**
* The layer order. The following values are supported:<ul>
*
* <li><i>null</i> - use given layer order.
* <li>inside-out - sort by maximum value, with balanced order.
* <li>reverse - use reverse of given layer order.
*
* </ul>For details on the inside-out order algorithm, refer to "Stacked Graphs
* -- Geometry &amp; Aesthetics" by L. Byron and M. Wattenberg, IEEE TVCG
* November/December 2008.
*
* @type string
* @name pv.Layout.Stack.prototype.order
*/
/**
* The layer offset; the y-position of the bottom of the lowest layer. The
* following values are supported:<ul>
*
* <li>zero - use a zero baseline, i.e., the y-axis.
* <li>silohouette - center the stream, i.e., ThemeRiver.
* <li>wiggle - minimize weighted change in slope.
* <li>expand - expand layers to fill the enclosing layout dimensions.
*
* </ul>For details on these offset algorithms, refer to "Stacked Graphs --
* Geometry &amp; Aesthetics" by L. Byron and M. Wattenberg, IEEE TVCG
* November/December 2008.
*
* @type string
* @name pv.Layout.Stack.prototype.offset
*/
/**
* Constructs a new, empty treemap layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a space-filling rectangular layout, with the hierarchy
* represented via containment. Treemaps represent nodes as boxes, with child
* nodes placed within parent boxes. The size of each box is proportional to the
* size of the node in the tree. This particular algorithm is taken from Bruls,
* D.M., C. Huizing, and J.J. van Wijk, <a
* href="http://www.win.tue.nl/~vanwijk/stm.pdf">"Squarified Treemaps"</a> in
* <i>Data Visualization 2000, Proceedings of the Joint Eurographics and IEEE
* TCVG Sumposium on Visualization</i>, 2000, pp. 33-42.
*
* <p>The meaning of the exported mark prototypes changes slightly in the
* space-filling implementation:<ul>
*
* <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Bar}. The node
* data is populated with <tt>dx</tt> and <tt>dy</tt> attributes, in addition to
* the standard <tt>x</tt> and <tt>y</tt> position attributes.
*
* <p><li><tt>leaf</tt> - for rendering leaf nodes only, with no fill or stroke
* style by default; typically a {@link pv.Panel} or another layout!
*
* <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
* in the arrangement of the space-filling nodes.
*
* <p><li><tt>label</tt> - for rendering node labels; typically a
* {@link pv.Label}.
*
* </ul>For more details on how to use this layout, see
* {@link pv.Layout.Hierarchy}.
*
* @extends pv.Layout.Hierarchy
*/
pv.Layout.Treemap = function() {
pv.Layout.Hierarchy.call(this);
this.node
.strokeStyle("#fff")
.fillStyle("rgba(31, 119, 180, .25)")
.width(function(n) { return n.dx; })
.height(function(n) { return n.dy; });
this.label
.visible(function(n) { return !n.firstChild; })
.left(function(n) { return n.x + (n.dx / 2); })
.top(function(n) { return n.y + (n.dy / 2); })
.textAlign("center")
.textAngle(function(n) { return n.dx > n.dy ? 0 : -Math.PI / 2; });
(this.leaf = new pv.Mark()
.extend(this.node)
.fillStyle(null)
.strokeStyle(null)
.visible(function(n) { return !n.firstChild; })).parent = this;
/* Hide unsupported link. */
delete this.link;
};
pv.Layout.Treemap.prototype = pv.extend(pv.Layout.Hierarchy)
.property("round", Boolean)
.property("paddingLeft", Number)
.property("paddingRight", Number)
.property("paddingTop", Number)
.property("paddingBottom", Number)
.property("mode", String)
.property("order", String);
/**
* Default propertiess for treemap layouts. The default mode is "squarify" and
* the default order is "ascending".
*
* @type pv.Layout.Treemap
*/
pv.Layout.Treemap.prototype.defaults = new pv.Layout.Treemap()
.extend(pv.Layout.Hierarchy.prototype.defaults)
.mode("squarify") // squarify, slice-and-dice, slice, dice
.order("ascending"); // ascending, descending, reverse, null
/**
* Whether node sizes should be rounded to integer values. This has a similar
* effect to setting <tt>antialias(false)</tt> for node values, but allows the
* treemap algorithm to accumulate error related to pixel rounding.
*
* @type boolean
* @name pv.Layout.Treemap.prototype.round
*/
/**
* The left inset between parent add child in pixels. Defaults to 0.
*
* @type number
* @name pv.Layout.Treemap.prototype.paddingLeft
* @see #padding
*/
/**
* The right inset between parent add child in pixels. Defaults to 0.
*
* @type number
* @name pv.Layout.Treemap.prototype.paddingRight
* @see #padding
*/
/**
* The top inset between parent and child in pixels. Defaults to 0.
*
* @type number
* @name pv.Layout.Treemap.prototype.paddingTop
* @see #padding
*/
/**
* The bottom inset between parent and child in pixels. Defaults to 0.
*
* @type number
* @name pv.Layout.Treemap.prototype.paddingBottom
* @see #padding
*/
/**
* The treemap algorithm. The default value is "squarify". The "slice-and-dice"
* algorithm may also be used, which alternates between horizontal and vertical
* slices for different depths. In addition, the "slice" and "dice" algorithms
* may be specified explicitly to control whether horizontal or vertical slices
* are used, which may be useful for nested treemap layouts.
*
* @type string
* @name pv.Layout.Treemap.prototype.mode
* @see <a
* href="ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/2001-06html/2001-06.pdf"
* >"Ordered Treemap Layouts"</a> by B. Shneiderman &amp; M. Wattenberg, IEEE
* InfoVis 2001.
*/
/**
* The sibling node order. A <tt>null</tt> value means to use the sibling order
* specified by the nodes property as-is; "reverse" will reverse the given
* order. The default value "ascending" will sort siblings in ascending order of
* size, while "descending" will do the reverse. For sorting based on data
* attributes other than size, use the default <tt>null</tt> for the order
* property, and sort the nodes beforehand using the {@link pv.Dom} operator.
*
* @type string
* @name pv.Layout.Treemap.prototype.order
*/
/**
* Alias for setting the left, right, top and bottom padding properties
* simultaneously.
*
* @see #paddingLeft
* @see #paddingRight
* @see #paddingTop
* @see #paddingBottom
* @returns {pv.Layout.Treemap} this.
*/
pv.Layout.Treemap.prototype.padding = function(n) {
return this.paddingLeft(n).paddingRight(n).paddingTop(n).paddingBottom(n);
};
/** @private The default size function. */
pv.Layout.Treemap.prototype.$size = function(d) {
return Number(d.nodeValue);
};
/**
* Specifies the sizing function. By default, the size function uses the
* <tt>nodeValue</tt> attribute of nodes as a numeric value: <tt>function(d)
* Number(d.nodeValue)</tt>.
*
* <p>The sizing function is invoked for each leaf node in the tree, per the
* <tt>nodes</tt> property. For example, if the tree data structure represents a
* file system, with files as leaf nodes, and each file has a <tt>bytes</tt>
* attribute, you can specify a size function as:
*
* <pre> .size(function(d) d.bytes)</pre>
*
* @param {function} f the new sizing function.
* @returns {pv.Layout.Treemap} this.
*/
pv.Layout.Treemap.prototype.size = function(f) {
this.$size = pv.functor(f);
return this;
};
/** @private */
pv.Layout.Treemap.prototype.buildImplied = function(s) {
if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
var that = this,
nodes = s.nodes,
root = nodes[0],
stack = pv.Mark.stack,
left = s.paddingLeft,
right = s.paddingRight,
top = s.paddingTop,
bottom = s.paddingBottom,
/** @ignore */ size = function(n) { return n.size; },
round = s.round ? Math.round : Number,
mode = s.mode;
/** @private */
function slice(row, sum, horizontal, x, y, w, h) {
for (var i = 0, d = 0; i < row.length; i++) {
var n = row[i];
if (horizontal) {
n.x = x + d;
n.y = y;
d += n.dx = round(w * n.size / sum);
n.dy = h;
} else {
n.x = x;
n.y = y + d;
n.dx = w;
d += n.dy = round(h * n.size / sum);
}
}
if (n) { // correct on-axis rounding error
if (horizontal) {
n.dx += w - d;
} else {
n.dy += h - d;
}
}
}
/** @private */
function ratio(row, l) {
var rmax = -Infinity, rmin = Infinity, s = 0;
for (var i = 0; i < row.length; i++) {
var r = row[i].size;
if (r < rmin) rmin = r;
if (r > rmax) rmax = r;
s += r;
}
s = s * s;
l = l * l;
return Math.max(l * rmax / s, s / (l * rmin));
}
/** @private */
function layout(n, i) {
var x = n.x + left,
y = n.y + top,
w = n.dx - left - right,
h = n.dy - top - bottom;
/* Assume squarify by default. */
if (mode != "squarify") {
slice(n.childNodes, n.size,
mode == "slice" ? true
: mode == "dice" ? false
: i & 1, x, y, w, h);
return;
}
var row = [],
mink = Infinity,
l = Math.min(w, h),
k = w * h / n.size;
/* Abort if the size is nonpositive. */
if (n.size <= 0) return;
/* Scale the sizes to fill the current subregion. */
n.visitBefore(function(n) { n.size *= k; });
/** @private Position the specified nodes along one dimension. */
function position(row) {
var horizontal = w == l,
sum = pv.sum(row, size),
r = l ? round(sum / l) : 0;
slice(row, sum, horizontal, x, y, horizontal ? w : r, horizontal ? r : h);
if (horizontal) {
y += r;
h -= r;
} else {
x += r;
w -= r;
}
l = Math.min(w, h);
return horizontal;
}
var children = n.childNodes.slice(); // copy
while (children.length) {
var child = children[children.length - 1];
if (!child.size) {
children.pop();
continue;
}
row.push(child);
var k = ratio(row, l);
if (k <= mink) {
children.pop();
mink = k;
} else {
row.pop();
position(row);
row.length = 0;
mink = Infinity;
}
}
/* correct off-axis rounding error */
if (position(row)) for (var i = 0; i < row.length; i++) {
row[i].dy += h;
} else for (var i = 0; i < row.length; i++) {
row[i].dx += w;
}
}
/* Recursively compute the node depth and size. */
stack.unshift(null);
root.visitAfter(function(n, i) {
n.depth = i;
n.x = n.y = n.dx = n.dy = 0;
n.size = n.firstChild
? pv.sum(n.childNodes, function(n) { return n.size; })
: that.$size.apply(that, (stack[0] = n, stack));
});
stack.shift();
/* Sort. */
switch (s.order) {
case "ascending": {
root.sort(function(a, b) { return a.size - b.size; });
break;
}
case "descending": {
root.sort(function(a, b) { return b.size - a.size; });
break;
}
case "reverse": root.reverse(); break;
}
/* Recursively compute the layout. */
root.x = 0;
root.y = 0;
root.dx = s.width;
root.dy = s.height;
root.visitBefore(layout);
};
/**
* Constructs a new, empty tree layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a node-link tree diagram using the Reingold-Tilford "tidy"
* tree layout algorithm. The specific algorithm used by this layout is based on
* <a href="http://citeseer.ist.psu.edu/buchheim02improving.html">"Improving
* Walker's Algorithm to Run in Linear Time"</A> by C. Buchheim, M. J&uuml;nger
* &amp; S. Leipert, Graph Drawing 2002. This layout supports both cartesian and
* radial orientations orientations for node-link diagrams.
*
* <p>The tree layout supports a "group" property, which if true causes siblings
* to be positioned closer together than unrelated nodes at the same depth. The
* layout can be configured using the <tt>depth</tt> and <tt>breadth</tt>
* properties, which control the increments in pixel space between nodes in both
* dimensions, similar to the indent layout.
*
* <p>For more details on how to use this layout, see
* {@link pv.Layout.Hierarchy}.
*
* @extends pv.Layout.Hierarchy
*/
pv.Layout.Tree = function() {
pv.Layout.Hierarchy.call(this);
};
pv.Layout.Tree.prototype = pv.extend(pv.Layout.Hierarchy)
.property("group", Number)
.property("breadth", Number)
.property("depth", Number)
.property("orient", String);
/**
* Default properties for tree layouts. The default orientation is "top", the
* default group parameter is 1, and the default breadth and depth offsets are
* 15 and 60 respectively.
*
* @type pv.Layout.Tree
*/
pv.Layout.Tree.prototype.defaults = new pv.Layout.Tree()
.extend(pv.Layout.Hierarchy.prototype.defaults)
.group(1)
.breadth(15)
.depth(60)
.orient("top");
/** @private */
pv.Layout.Tree.prototype.buildImplied = function(s) {
if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
var nodes = s.nodes,
orient = s.orient,
depth = s.depth,
breadth = s.breadth,
group = s.group,
w = s.width,
h = s.height;
/** @private */
function firstWalk(v) {
var l, r, a;
if (!v.firstChild) {
if (l = v.previousSibling) {
v.prelim = l.prelim + distance(v.depth, true);
}
} else {
l = v.firstChild;
r = v.lastChild;
a = l; // default ancestor
for (var c = l; c; c = c.nextSibling) {
firstWalk(c);
a = apportion(c, a);
}
executeShifts(v);
var midpoint = .5 * (l.prelim + r.prelim);
if (l = v.previousSibling) {
v.prelim = l.prelim + distance(v.depth, true);
v.mod = v.prelim - midpoint;
} else {
v.prelim = midpoint;
}
}
}
/** @private */
function secondWalk(v, m, depth) {
v.breadth = v.prelim + m;
m += v.mod;
for (var c = v.firstChild; c; c = c.nextSibling) {
secondWalk(c, m, depth);
}
}
/** @private */
function apportion(v, a) {
var w = v.previousSibling;
if (w) {
var vip = v,
vop = v,
vim = w,
vom = v.parentNode.firstChild,
sip = vip.mod,
sop = vop.mod,
sim = vim.mod,
som = vom.mod,
nr = nextRight(vim),
nl = nextLeft(vip);
while (nr && nl) {
vim = nr;
vip = nl;
vom = nextLeft(vom);
vop = nextRight(vop);
vop.ancestor = v;
var shift = (vim.prelim + sim) - (vip.prelim + sip) + distance(vim.depth, false);
if (shift > 0) {
moveSubtree(ancestor(vim, v, a), v, shift);
sip += shift;
sop += shift;
}
sim += vim.mod;
sip += vip.mod;
som += vom.mod;
sop += vop.mod;
nr = nextRight(vim);
nl = nextLeft(vip);
}
if (nr && !nextRight(vop)) {
vop.thread = nr;
vop.mod += sim - sop;
}
if (nl && !nextLeft(vom)) {
vom.thread = nl;
vom.mod += sip - som;
a = v;
}
}
return a;
}
/** @private */
function nextLeft(v) {
return v.firstChild || v.thread;
}
/** @private */
function nextRight(v) {
return v.lastChild || v.thread;
}
/** @private */
function moveSubtree(wm, wp, shift) {
var subtrees = wp.number - wm.number;
wp.change -= shift / subtrees;
wp.shift += shift;
wm.change += shift / subtrees;
wp.prelim += shift;
wp.mod += shift;
}
/** @private */
function executeShifts(v) {
var shift = 0, change = 0;
for (var c = v.lastChild; c; c = c.previousSibling) {
c.prelim += shift;
c.mod += shift;
change += c.change;
shift += c.shift + change;
}
}
/** @private */
function ancestor(vim, v, a) {
return (vim.ancestor.parentNode == v.parentNode) ? vim.ancestor : a;
}
/** @private */
function distance(depth, siblings) {
return (siblings ? 1 : (group + 1)) / ((orient == "radial") ? depth : 1);
}
/* Initialize temporary layout variables. TODO: store separately. */
var root = nodes[0];
root.visitAfter(function(v, i) {
v.ancestor = v;
v.prelim = 0;
v.mod = 0;
v.change = 0;
v.shift = 0;
v.number = v.previousSibling ? (v.previousSibling.number + 1) : 0;
v.depth = i;
});
/* Compute the layout using Buchheim et al.'s algorithm. */
firstWalk(root);
secondWalk(root, -root.prelim, 0);
/** @private Returns the angle of the given node. */
function midAngle(n) {
return (orient == "radial") ? n.breadth / depth : 0;
}
/** @private */
function x(n) {
switch (orient) {
case "left": return n.depth;
case "right": return w - n.depth;
case "top":
case "bottom": return n.breadth + w / 2;
case "radial": return w / 2 + n.depth * Math.cos(midAngle(n));
}
}
/** @private */
function y(n) {
switch (orient) {
case "left":
case "right": return n.breadth + h / 2;
case "top": return n.depth;
case "bottom": return h - n.depth;
case "radial": return h / 2 + n.depth * Math.sin(midAngle(n));
}
}
/* Clear temporary layout variables; transform depth and breadth. */
root.visitAfter(function(v) {
v.breadth *= breadth;
v.depth *= depth;
v.midAngle = midAngle(v);
v.x = x(v);
v.y = y(v);
if (v.firstChild) v.midAngle += Math.PI;
delete v.breadth;
delete v.depth;
delete v.ancestor;
delete v.prelim;
delete v.mod;
delete v.change;
delete v.shift;
delete v.number;
delete v.thread;
});
};
/**
* The offset between siblings nodes; defaults to 15.
*
* @type number
* @name pv.Layout.Tree.prototype.breadth
*/
/**
* The offset between parent and child nodes; defaults to 60.
*
* @type number
* @name pv.Layout.Tree.prototype.depth
*/
/**
* The orientation. The default orientation is "top", which means that the root
* node is placed on the top edge, leaf nodes appear at the bottom, and internal
* nodes are in-between. The following orientations are supported:<ul>
*
* <li>left - left-to-right.
* <li>right - right-to-left.
* <li>top - top-to-bottom.
* <li>bottom - bottom-to-top.
* <li>radial - radially, with the root at the center.</ul>
*
* @type string
* @name pv.Layout.Tree.prototype.orient
*/
/**
* The sibling grouping, i.e., whether differentiating space is placed between
* sibling groups. The default is 1 (or true), causing sibling leaves to be
* separated by one breadth offset. Setting this to false (or 0) causes
* non-siblings to be adjacent.
*
* @type number
* @name pv.Layout.Tree.prototype.group
*/
/**
* Constructs a new, empty indent layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a hierarchical layout using the indent algorithm. This
* layout implements a node-link diagram where the nodes are presented in
* preorder traversal, and nodes are indented based on their depth from the
* root. This technique is used ubiquitously by operating systems to represent
* file directories; although it requires much vertical space, indented trees
* allow efficient <i>interactive</i> exploration of trees to find a specific
* node. In addition they allow rapid scanning of node labels, and multivariate
* data such as file sizes can be displayed adjacent to the hierarchy.
*
* <p>The indent layout can be configured using the <tt>depth</tt> and
* <tt>breadth</tt> properties, which control the increments in pixel space for
* each indent and row in the layout. This layout does not support multiple
* orientations; the root node is rendered in the top-left, while
* <tt>breadth</tt> is a vertical offset from the top, and <tt>depth</tt> is a
* horizontal offset from the left.
*
* <p>For more details on how to use this layout, see
* {@link pv.Layout.Hierarchy}.
*
* @extends pv.Layout.Hierarchy
*/
pv.Layout.Indent = function() {
pv.Layout.Hierarchy.call(this);
this.link.interpolate("step-after");
};
pv.Layout.Indent.prototype = pv.extend(pv.Layout.Hierarchy)
.property("depth", Number)
.property("breadth", Number);
/**
* The horizontal offset between different levels of the tree; defaults to 15.
*
* @type number
* @name pv.Layout.Indent.prototype.depth
*/
/**
* The vertical offset between nodes; defaults to 15.
*
* @type number
* @name pv.Layout.Indent.prototype.breadth
*/
/**
* Default properties for indent layouts. By default the depth and breadth
* offsets are 15 pixels.
*
* @type pv.Layout.Indent
*/
pv.Layout.Indent.prototype.defaults = new pv.Layout.Indent()
.extend(pv.Layout.Hierarchy.prototype.defaults)
.depth(15)
.breadth(15);
/** @private */
pv.Layout.Indent.prototype.buildImplied = function(s) {
if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
var nodes = s.nodes,
bspace = s.breadth,
dspace = s.depth,
ax = 0,
ay = 0;
/** @private */
function position(n, breadth, depth) {
n.x = ax + depth++ * dspace;
n.y = ay + breadth++ * bspace;
n.midAngle = 0;
for (var c = n.firstChild; c; c = c.nextSibling) {
breadth = position(c, breadth, depth);
}
return breadth;
}
position(nodes[0], 1, 1);
};
/**
* Constructs a new, empty circle-packing layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a hierarchical layout using circle-packing. The meaning of
* the exported mark prototypes changes slightly in the space-filling
* implementation:<ul>
*
* <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Dot}.
*
* <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
* in the arrangement of the space-filling nodes.
*
* <p><li><tt>label</tt> - for rendering node labels; typically a
* {@link pv.Label}.
*
* </ul>The pack layout support dynamic sizing for leaf nodes, if a
* {@link #size} psuedo-property is specified. The default size function returns
* 1, causing all leaf nodes to be sized equally, and all internal nodes to be
* sized by the number of leaf nodes they have as descendants.
*
* <p>The size function can be used in conjunction with the order property,
* which allows the nodes to the sorted by the computed size. Note: for sorting
* based on other data attributes, simply use the default <tt>null</tt> for the
* order property, and sort the nodes beforehand using the {@link pv.Dom}
* operator.
*
* <p>For more details on how to use this layout, see
* {@link pv.Layout.Hierarchy}.
*
* @extends pv.Layout.Hierarchy
* @see <a href="http://portal.acm.org/citation.cfm?id=1124772.1124851"
* >"Visualization of large hierarchical data by circle packing"</a> by W. Wang,
* H. Wang, G. Dai, and H. Wang, ACM CHI 2006.
*/
pv.Layout.Pack = function() {
pv.Layout.Hierarchy.call(this);
this.node
.radius(function(n) { return n.radius; })
.strokeStyle("rgb(31, 119, 180)")
.fillStyle("rgba(31, 119, 180, .25)");
this.label
.textAlign("center");
/* Hide unsupported link. */
delete this.link;
};
pv.Layout.Pack.prototype = pv.extend(pv.Layout.Hierarchy)
.property("spacing", Number)
.property("order", String); // ascending, descending, reverse, null
/**
* Default properties for circle-packing layouts. The default spacing parameter
* is 1 and the default order is "ascending".
*
* @type pv.Layout.Pack
*/
pv.Layout.Pack.prototype.defaults = new pv.Layout.Pack()
.extend(pv.Layout.Hierarchy.prototype.defaults)
.spacing(1)
.order("ascending");
/**
* The spacing parameter; defaults to 1, which provides a little bit of padding
* between sibling nodes and the enclosing circle. Larger values increase the
* spacing, by making the sibling nodes smaller; a value of zero makes the leaf
* nodes as large as possible, with no padding on enclosing circles.
*
* @type number
* @name pv.Layout.Pack.prototype.spacing
*/
/**
* The sibling node order. The default order is <tt>null</tt>, which means to
* use the sibling order specified by the nodes property as-is. A value of
* "ascending" will sort siblings in ascending order of size, while "descending"
* will do the reverse. For sorting based on data attributes other than size,
* use the default <tt>null</tt> for the order property, and sort the nodes
* beforehand using the {@link pv.Dom} operator.
*
* @see pv.Dom.Node#sort
* @type string
* @name pv.Layout.Pack.prototype.order
*/
/** @private The default size function. */
pv.Layout.Pack.prototype.$radius = function() { return 1; };
// TODO is it possible for spacing to operate in pixel space?
// Right now it appears to be multiples of the smallest radius.
/**
* Specifies the sizing function. By default, a sizing function is disabled and
* all nodes are given constant size. The sizing function is invoked for each
* leaf node in the tree (passed to the constructor).
*
* <p>For example, if the tree data structure represents a file system, with
* files as leaf nodes, and each file has a <tt>bytes</tt> attribute, you can
* specify a size function as:
*
* <pre> .size(function(d) d.bytes)</pre>
*
* As with other properties, a size function may specify additional arguments to
* access the data associated with the layout and any enclosing panels.
*
* @param {function} f the new sizing function.
* @returns {pv.Layout.Pack} this.
*/
pv.Layout.Pack.prototype.size = function(f) {
this.$radius = typeof f == "function"
? function() { return Math.sqrt(f.apply(this, arguments)); }
: (f = Math.sqrt(f), function() { return f; });
return this;
};
/** @private */
pv.Layout.Pack.prototype.buildImplied = function(s) {
if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
var that = this,
nodes = s.nodes,
root = nodes[0];
/** @private Compute the radii of the leaf nodes. */
function radii(nodes) {
var stack = pv.Mark.stack;
stack.unshift(null);
for (var i = 0, n = nodes.length; i < n; i++) {
var c = nodes[i];
if (!c.firstChild) {
c.radius = that.$radius.apply(that, (stack[0] = c, stack));
}
}
stack.shift();
}
/** @private */
function packTree(n) {
var nodes = [];
for (var c = n.firstChild; c; c = c.nextSibling) {
if (c.firstChild) c.radius = packTree(c);
c.n = c.p = c;
nodes.push(c);
}
/* Sort. */
switch (s.order) {
case "ascending": {
nodes.sort(function(a, b) { return a.radius - b.radius; });
break;
}
case "descending": {
nodes.sort(function(a, b) { return b.radius - a.radius; });
break;
}
case "reverse": nodes.reverse(); break;
}
return packCircle(nodes);
}
/** @private */
function packCircle(nodes) {
var xMin = Infinity,
xMax = -Infinity,
yMin = Infinity,
yMax = -Infinity,
a, b, c, j, k;
/** @private */
function bound(n) {
xMin = Math.min(n.x - n.radius, xMin);
xMax = Math.max(n.x + n.radius, xMax);
yMin = Math.min(n.y - n.radius, yMin);
yMax = Math.max(n.y + n.radius, yMax);
}
/** @private */
function insert(a, b) {
var c = a.n;
a.n = b;
b.p = a;
b.n = c;
c.p = b;
}
/** @private */
function splice(a, b) {
a.n = b;
b.p = a;
}
/** @private */
function intersects(a, b) {
var dx = b.x - a.x,
dy = b.y - a.y,
dr = a.radius + b.radius;
return (dr * dr - dx * dx - dy * dy) > .001; // within epsilon
}
/* Create first node. */
a = nodes[0];
a.x = -a.radius;
a.y = 0;
bound(a);
/* Create second node. */
if (nodes.length > 1) {
b = nodes[1];
b.x = b.radius;
b.y = 0;
bound(b);
/* Create third node and build chain. */
if (nodes.length > 2) {
c = nodes[2];
place(a, b, c);
bound(c);
insert(a, c);
a.p = c;
insert(c, b);
b = a.n;
/* Now iterate through the rest. */
for (var i = 3; i < nodes.length; i++) {
place(a, b, c = nodes[i]);
/* Search for the closest intersection. */
var isect = 0, s1 = 1, s2 = 1;
for (j = b.n; j != b; j = j.n, s1++) {
if (intersects(j, c)) {
isect = 1;
break;
}
}
if (isect == 1) {
for (k = a.p; k != j.p; k = k.p, s2++) {
if (intersects(k, c)) {
if (s2 < s1) {
isect = -1;
j = k;
}
break;
}
}
}
/* Update node chain. */
if (isect == 0) {
insert(a, c);
b = c;
bound(c);
} else if (isect > 0) {
splice(a, j);
b = j;
i--;
} else if (isect < 0) {
splice(j, b);
a = j;
i--;
}
}
}
}
/* Re-center the circles and return the encompassing radius. */
var cx = (xMin + xMax) / 2,
cy = (yMin + yMax) / 2,
cr = 0;
for (var i = 0; i < nodes.length; i++) {
var n = nodes[i];
n.x -= cx;
n.y -= cy;
cr = Math.max(cr, n.radius + Math.sqrt(n.x * n.x + n.y * n.y));
}
return cr + s.spacing;
}
/** @private */
function place(a, b, c) {
var da = b.radius + c.radius,
db = a.radius + c.radius,
dx = b.x - a.x,
dy = b.y - a.y,
dc = Math.sqrt(dx * dx + dy * dy),
cos = (db * db + dc * dc - da * da) / (2 * db * dc),
theta = Math.acos(cos),
x = cos * db,
h = Math.sin(theta) * db;
dx /= dc;
dy /= dc;
c.x = a.x + x * dx + h * dy;
c.y = a.y + x * dy - h * dx;
}
/** @private */
function transform(n, x, y, k) {
for (var c = n.firstChild; c; c = c.nextSibling) {
c.x += n.x;
c.y += n.y;
transform(c, x, y, k);
}
n.x = x + k * n.x;
n.y = y + k * n.y;
n.radius *= k;
}
radii(nodes);
/* Recursively compute the layout. */
root.x = 0;
root.y = 0;
root.radius = packTree(root);
var w = this.width(),
h = this.height(),
k = 1 / Math.max(2 * root.radius / w, 2 * root.radius / h);
transform(root, w / 2, h / 2, k);
};
/**
* Constructs a new, empty force-directed layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements force-directed network layout as a node-link diagram. This
* layout uses the Fruchterman-Reingold algorithm, which applies an attractive
* spring force between neighboring nodes, and a repulsive electrical charge
* force between all nodes. An additional drag force improves stability of the
* simulation. See {@link pv.Force.spring}, {@link pv.Force.drag} and {@link
* pv.Force.charge} for more details; note that the n-body charge force is
* approximated using the Barnes-Hut algorithm.
*
* <p>This layout is implemented on top of {@link pv.Simulation}, which can be
* used directly for more control over simulation parameters. The simulation
* uses Position Verlet integration, which does not compute velocities
* explicitly, but allows for easy geometric constraints, such as bounding the
* nodes within the layout panel. Many of the configuration properties supported
* by this layout are simply passed through to the underlying forces and
* constraints of the simulation.
*
* <p>Force layouts are typically interactive. The gradual movement of the nodes
* as they stabilize to a local stress minimum can help reveal the structure of
* the network, as can {@link pv.Behavior.drag}, which allows the user to pick
* up nodes and reposition them while the physics simulation continues. This
* layout can also be used with pan &amp; zoom behaviors for interaction.
*
* <p>To facilitate interaction, this layout by default automatically re-renders
* using a <tt>setInterval</tt> every 42 milliseconds. This can be disabled via
* the <tt>iterations</tt> property, which if non-null specifies the number of
* simulation iterations to run before the force-directed layout is finalized.
* Be careful not to use too high an iteration count, as this can lead to an
* annoying delay on page load.
*
* <p>As with other network layouts, the network data can be updated
* dynamically, provided the property cache is reset. See
* {@link pv.Layout.Network} for details. New nodes are initialized with random
* positions near the center. Alternatively, positions can be specified manually
* by setting the <tt>x</tt> and <tt>y</tt> attributes on nodes.
*
* @extends pv.Layout.Network
* @see <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.8444&rep=rep1&type=pdf"
* >"Graph Drawing by Force-directed Placement"</a> by T. Fruchterman &amp;
* E. Reingold, Software--Practice &amp; Experience, November 1991.
*/
pv.Layout.Force = function() {
pv.Layout.Network.call(this);
/* Force-directed graphs can be messy, so reduce the link width. */
this.link.lineWidth(function(d, p) { return Math.sqrt(p.linkValue) * 1.5; });
this.label.textAlign("center");
};
pv.Layout.Force.prototype = pv.extend(pv.Layout.Network)
.property("bound", Boolean)
.property("iterations", Number)
.property("dragConstant", Number)
.property("chargeConstant", Number)
.property("chargeMinDistance", Number)
.property("chargeMaxDistance", Number)
.property("chargeTheta", Number)
.property("springConstant", Number)
.property("springDamping", Number)
.property("springLength", Number);
/**
* The bound parameter; true if nodes should be constrained within the layout
* panel. Bounding is disabled by default. Currently the layout does not observe
* the radius of the nodes; strictly speaking, only the center of the node is
* constrained to be within the panel, with an additional 6-pixel offset for
* padding. A future enhancement could extend the bound constraint to observe
* the node's radius, which would also support bounding for variable-size nodes.
*
* <p>Note that if this layout is used in conjunction with pan &amp; zoom
* behaviors, those behaviors should have their bound parameter set to the same
* value.
*
* @type boolean
* @name pv.Layout.Force.prototype.bound
*/
/**
* The number of simulation iterations to run, or null if this layout is
* interactive. Force-directed layouts are interactive by default, using a
* <tt>setInterval</tt> to advance the physics simulation and re-render
* automatically.
*
* @type number
* @name pv.Layout.Force.prototype.iterations
*/
/**
* The drag constant, in the range [0,1]. A value of 0 means no drag (a
* perfectly frictionless environment), while a value of 1 means friction
* immediately cancels all momentum. The default value is 0.1, which provides a
* minimum amount of drag that helps stabilize bouncy springs; lower values may
* result in excessive bounciness, while higher values cause the simulation to
* take longer to converge.
*
* @type number
* @name pv.Layout.Force.prototype.dragConstant
* @see pv.Force.drag#constant
*/
/**
* The charge constant, which should be a negative number. The default value is
* -40; more negative values will result in a stronger repulsive force, which
* may lead to faster convergence at the risk of instability. Too strong
* repulsive charge forces can cause comparatively weak springs to be stretched
* well beyond their rest length, emphasizing global structure over local
* structure. A nonnegative value will break the Fruchterman-Reingold algorithm,
* and is for entertainment purposes only.
*
* @type number
* @name pv.Layout.Force.prototype.chargeConstant
* @see pv.Force.charge#constant
*/
/**
* The minimum distance at which charge forces are applied. The default minimum
* distance of 2 avoids applying forces that are two strong; because the physics
* simulation is run at discrete time intervals, it is possible for two same-
* charged particles to become very close or even a singularity! Since the
* charge force is inversely proportional to the square of the distance, very
* small distances can break the simulation.
*
* <p>In rare cases, two particles can become stuck on top of each other, as a
* minimum distance threshold will prevent the charge force from repelling them.
* However, this occurs very rarely because other forces and momentum typically
* cause the particles to become separated again, at which point the repulsive
* charge force kicks in.
*
* @type number
* @name pv.Layout.Force.prototype.chargeMinDistance
* @see pv.Force.charge#domain
*/
/**
* The maximum distance at which charge forces are applied. This improves
* performance by ignoring weak charge forces at great distances. Note that this
* parameter is partly redundant, as the Barnes-Hut algorithm for n-body forces
* already improves performance for far-away particles through approximation.
*
* @type number
* @name pv.Layout.Force.prototype.chargeMaxDistance
* @see pv.Force.charge#domain
*/
/**
* The Barnes-Hut approximation factor. The Barnes-Hut approximation criterion
* is the ratio of the size of the quadtree node to the distance from the point
* to the node's center of mass is beneath some threshold. The default value is
* 0.9.
*
* @type number
* @name pv.Layout.Force.prototype.chargeTheta
* @see pv.Force.charge#theta
*/
/**
* The spring constant, which should be a positive number. The default value is
* 0.1; greater values will result in a stronger attractive force, which may
* lead to faster convergence at the risk of instability. Too strong spring
* forces can cause comparatively weak charge forces to be ignored, emphasizing
* local structure over global structure. A nonpositive value will break the
* Fruchterman-Reingold algorithm, and is for entertainment purposes only.
*
* <p>The spring tension is automatically normalized using the inverse square
* root of the maximum link degree of attached nodes.
*
* @type number
* @name pv.Layout.Force.prototype.springConstant
* @see pv.Force.spring#constant
*/
/**
* The spring damping factor, in the range [0,1]. Damping functions identically
* to drag forces, damping spring bounciness by applying a force in the opposite
* direction of attached nodes' velocities. The default value is 0.3.
*
* <p>The spring damping is automatically normalized using the inverse square
* root of the maximum link degree of attached nodes.
*
* @type number
* @name pv.Layout.Force.prototype.springDamping
* @see pv.Force.spring#damping
*/
/**
* The spring rest length. The default value is 20 pixels. Larger values may be
* appropriate if the layout panel is larger, or if the nodes are rendered
* larger than the default dot size of 20.
*
* @type number
* @name pv.Layout.Force.prototype.springLength
* @see pv.Force.spring#length
*/
/**
* Default properties for force-directed layouts. The default drag constant is
* 0.1, the default charge constant is -40 (with a domain of [2, 500] and theta
* of 0.9), and the default spring constant is 0.1 (with a damping of 0.3 and a
* rest length of 20).
*
* @type pv.Layout.Force
*/
pv.Layout.Force.prototype.defaults = new pv.Layout.Force()
.extend(pv.Layout.Network.prototype.defaults)
.dragConstant(.1)
.chargeConstant(-40)
.chargeMinDistance(2)
.chargeMaxDistance(500)
.chargeTheta(.9)
.springConstant(.1)
.springDamping(.3)
.springLength(20);
/** @private Initialize the physics simulation. */
pv.Layout.Force.prototype.buildImplied = function(s) {
/* Any cached interactive layouts need to be rebound for the timer. */
if (pv.Layout.Network.prototype.buildImplied.call(this, s)) {
var f = s.$force;
if (f) {
f.next = this.binds.$force;
this.binds.$force = f;
}
return;
}
var that = this,
nodes = s.nodes,
links = s.links,
k = s.iterations,
w = s.width,
h = s.height;
/* Initialize positions randomly near the center. */
for (var i = 0, n; i < nodes.length; i++) {
n = nodes[i];
if (isNaN(n.x)) n.x = w / 2 + 40 * Math.random() - 20;
if (isNaN(n.y)) n.y = h / 2 + 40 * Math.random() - 20;
}
/* Initialize the simulation. */
var sim = pv.simulation(nodes);
/* Drag force. */
sim.force(pv.Force.drag(s.dragConstant));
/* Charge (repelling) force. */
sim.force(pv.Force.charge(s.chargeConstant)
.domain(s.chargeMinDistance, s.chargeMaxDistance)
.theta(s.chargeTheta));
/* Spring (attracting) force. */
sim.force(pv.Force.spring(s.springConstant)
.damping(s.springDamping)
.length(s.springLength)
.links(links));
/* Position constraint (for interactive dragging). */
sim.constraint(pv.Constraint.position());
/* Optionally add bound constraint. TODO: better padding. */
if (s.bound) {
sim.constraint(pv.Constraint.bound().x(6, w - 6).y(6, h - 6));
}
/** @private Returns the speed of the given node, to determine cooling. */
function speed(n) {
return n.fix ? 1 : n.vx * n.vx + n.vy * n.vy;
}
/*
* If the iterations property is null (the default), the layout is
* interactive. The simulation is run until the fastest particle drops below
* an arbitrary minimum speed. Although the timer keeps firing, this speed
* calculation is fast so there is minimal CPU overhead. Note: if a particle
* is fixed for interactivity, treat this as a high speed and resume
* simulation.
*/
if (k == null) {
sim.step(); // compute initial previous velocities
sim.step(); // compute initial velocities
/* Add the simulation state to the bound list. */
var force = s.$force = this.binds.$force = {
next: this.binds.$force,
nodes: nodes,
min: 1e-4 * (links.length + 1),
sim: sim
};
/* Start the timer, if not already started. */
if (!this.$timer) this.$timer = setInterval(function() {
var render = false;
for (var f = that.binds.$force; f; f = f.next) {
if (pv.max(f.nodes, speed) > f.min) {
f.sim.step();
render = true;
}
}
if (render) that.render();
}, 42);
} else for (var i = 0; i < k; i++) {
sim.step();
}
};
/**
* Constructs a new, empty cluster layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a hierarchical layout using the cluster (or dendrogram)
* algorithm. This layout provides both node-link and space-filling
* implementations of cluster diagrams. In many ways it is similar to
* {@link pv.Layout.Partition}, except that leaf nodes are positioned at maximum
* depth, and the depth of internal nodes is based on their distance from their
* deepest descendant, rather than their distance from the root.
*
* <p>The cluster layout supports a "group" property, which if true causes
* siblings to be positioned closer together than unrelated nodes at the same
* depth. Unlike the partition layout, this layout does not support dynamic
* sizing for leaf nodes; all leaf nodes are the same size.
*
* <p>For more details on how to use this layout, see
* {@link pv.Layout.Hierarchy}.
*
* @see pv.Layout.Cluster.Fill
* @extends pv.Layout.Hierarchy
*/
pv.Layout.Cluster = function() {
pv.Layout.Hierarchy.call(this);
var interpolate, // cached interpolate
buildImplied = this.buildImplied;
/** @private Cache layout state to optimize properties. */
this.buildImplied = function(s) {
buildImplied.call(this, s);
interpolate
= /^(top|bottom)$/.test(s.orient) ? "step-before"
: /^(left|right)$/.test(s.orient) ? "step-after"
: "linear";
};
this.link.interpolate(function() { return interpolate; });
};
pv.Layout.Cluster.prototype = pv.extend(pv.Layout.Hierarchy)
.property("group", Number)
.property("orient", String)
.property("innerRadius", Number)
.property("outerRadius", Number);
/**
* The group parameter; defaults to 0, disabling grouping of siblings. If this
* parameter is set to a positive number (or true, which is equivalent to 1),
* then additional space will be allotted between sibling groups. In other
* words, siblings (nodes that share the same parent) will be positioned more
* closely than nodes at the same depth that do not share a parent.
*
* @type number
* @name pv.Layout.Cluster.prototype.group
*/
/**
* The orientation. The default orientation is "top", which means that the root
* node is placed on the top edge, leaf nodes appear on the bottom edge, and
* internal nodes are in-between. The following orientations are supported:<ul>
*
* <li>left - left-to-right.
* <li>right - right-to-left.
* <li>top - top-to-bottom.
* <li>bottom - bottom-to-top.
* <li>radial - radially, with the root at the center.</ul>
*
* @type string
* @name pv.Layout.Cluster.prototype.orient
*/
/**
* The inner radius; defaults to 0. This property applies only to radial
* orientations, and can be used to compress the layout radially. Note that for
* the node-link implementation, the root node is always at the center,
* regardless of the value of this property; this property only affects internal
* and leaf nodes. For the space-filling implementation, a non-zero value of
* this property will result in the root node represented as a ring rather than
* a circle.
*
* @type number
* @name pv.Layout.Cluster.prototype.innerRadius
*/
/**
* The outer radius; defaults to fill the containing panel, based on the height
* and width of the layout. If the layout has no height and width specified, it
* will extend to fill the enclosing panel.
*
* @type number
* @name pv.Layout.Cluster.prototype.outerRadius
*/
/**
* Defaults for cluster layouts. The default group parameter is 0 and the
* default orientation is "top".
*
* @type pv.Layout.Cluster
*/
pv.Layout.Cluster.prototype.defaults = new pv.Layout.Cluster()
.extend(pv.Layout.Hierarchy.prototype.defaults)
.group(0)
.orient("top");
/** @private */
pv.Layout.Cluster.prototype.buildImplied = function(s) {
if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
var root = s.nodes[0],
group = s.group,
breadth,
depth,
leafCount = 0,
leafIndex = .5 - group / 2;
/* Count the leaf nodes and compute the depth of descendants. */
var p = undefined;
root.visitAfter(function(n) {
if (n.firstChild) {
n.depth = 1 + pv.max(n.childNodes, function(n) { return n.depth; });
} else {
if (group && (p != n.parentNode)) {
p = n.parentNode;
leafCount += group;
}
leafCount++;
n.depth = 0;
}
});
breadth = 1 / leafCount;
depth = 1 / root.depth;
/* Compute the unit breadth and depth of each node. */
var p = undefined;
root.visitAfter(function(n) {
if (n.firstChild) {
n.breadth = pv.mean(n.childNodes, function(n) { return n.breadth; });
} else {
if (group && (p != n.parentNode)) {
p = n.parentNode;
leafIndex += group;
}
n.breadth = breadth * leafIndex++;
}
n.depth = 1 - n.depth * depth;
});
/* Compute breadth and depth ranges for space-filling layouts. */
root.visitAfter(function(n) {
n.minBreadth = n.firstChild
? n.firstChild.minBreadth
: (n.breadth - breadth / 2);
n.maxBreadth = n.firstChild
? n.lastChild.maxBreadth
: (n.breadth + breadth / 2);
});
root.visitBefore(function(n) {
n.minDepth = n.parentNode
? n.parentNode.maxDepth
: 0;
n.maxDepth = n.parentNode
? (n.depth + root.depth)
: (n.minDepth + 2 * root.depth);
});
root.minDepth = -depth;
pv.Layout.Hierarchy.NodeLink.buildImplied.call(this, s);
};
/**
* Constructs a new, empty space-filling cluster layout. Layouts are not
* typically constructed directly; instead, they are added to an existing panel
* via {@link pv.Mark#add}.
*
* @class A variant of cluster layout that is space-filling. The meaning of the
* exported mark prototypes changes slightly in the space-filling
* implementation:<ul>
*
* <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Bar} for
* non-radial orientations, and a {@link pv.Wedge} for radial orientations.
*
* <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
* in the arrangement of the space-filling nodes.
*
* <p><li><tt>label</tt> - for rendering node labels; typically a
* {@link pv.Label}.
*
* </ul>For more details on how to use this layout, see
* {@link pv.Layout.Cluster}.
*
* @extends pv.Layout.Cluster
*/
pv.Layout.Cluster.Fill = function() {
pv.Layout.Cluster.call(this);
pv.Layout.Hierarchy.Fill.constructor.call(this);
};
pv.Layout.Cluster.Fill.prototype = pv.extend(pv.Layout.Cluster);
/** @private */
pv.Layout.Cluster.Fill.prototype.buildImplied = function(s) {
if (pv.Layout.Cluster.prototype.buildImplied.call(this, s)) return;
pv.Layout.Hierarchy.Fill.buildImplied.call(this, s);
};
/**
* Constructs a new, empty partition layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implemeents a hierarchical layout using the partition (or sunburst,
* icicle) algorithm. This layout provides both node-link and space-filling
* implementations of partition diagrams. In many ways it is similar to
* {@link pv.Layout.Cluster}, except that leaf nodes are positioned based on
* their distance from the root.
*
* <p>The partition layout support dynamic sizing for leaf nodes, if a
* {@link #size} psuedo-property is specified. The default size function returns
* 1, causing all leaf nodes to be sized equally, and all internal nodes to be
* sized by the number of leaf nodes they have as descendants.
*
* <p>The size function can be used in conjunction with the order property,
* which allows the nodes to the sorted by the computed size. Note: for sorting
* based on other data attributes, simply use the default <tt>null</tt> for the
* order property, and sort the nodes beforehand using the {@link pv.Dom}
* operator.
*
* <p>For more details on how to use this layout, see
* {@link pv.Layout.Hierarchy}.
*
* @see pv.Layout.Partition.Fill
* @extends pv.Layout.Hierarchy
*/
pv.Layout.Partition = function() {
pv.Layout.Hierarchy.call(this);
};
pv.Layout.Partition.prototype = pv.extend(pv.Layout.Hierarchy)
.property("order", String) // null, ascending, descending?
.property("orient", String) // top, left, right, bottom, radial
.property("innerRadius", Number)
.property("outerRadius", Number);
/**
* The sibling node order. The default order is <tt>null</tt>, which means to
* use the sibling order specified by the nodes property as-is. A value of
* "ascending" will sort siblings in ascending order of size, while "descending"
* will do the reverse. For sorting based on data attributes other than size,
* use the default <tt>null</tt> for the order property, and sort the nodes
* beforehand using the {@link pv.Dom} operator.
*
* @see pv.Dom.Node#sort
* @type string
* @name pv.Layout.Partition.prototype.order
*/
/**
* The orientation. The default orientation is "top", which means that the root
* node is placed on the top edge, leaf nodes appear at the bottom, and internal
* nodes are in-between. The following orientations are supported:<ul>
*
* <li>left - left-to-right.
* <li>right - right-to-left.
* <li>top - top-to-bottom.
* <li>bottom - bottom-to-top.
* <li>radial - radially, with the root at the center.</ul>
*
* @type string
* @name pv.Layout.Partition.prototype.orient
*/
/**
* The inner radius; defaults to 0. This property applies only to radial
* orientations, and can be used to compress the layout radially. Note that for
* the node-link implementation, the root node is always at the center,
* regardless of the value of this property; this property only affects internal
* and leaf nodes. For the space-filling implementation, a non-zero value of
* this property will result in the root node represented as a ring rather than
* a circle.
*
* @type number
* @name pv.Layout.Partition.prototype.innerRadius
*/
/**
* The outer radius; defaults to fill the containing panel, based on the height
* and width of the layout. If the layout has no height and width specified, it
* will extend to fill the enclosing panel.
*
* @type number
* @name pv.Layout.Partition.prototype.outerRadius
*/
/**
* Default properties for partition layouts. The default orientation is "top".
*
* @type pv.Layout.Partition
*/
pv.Layout.Partition.prototype.defaults = new pv.Layout.Partition()
.extend(pv.Layout.Hierarchy.prototype.defaults)
.orient("top");
/** @private */
pv.Layout.Partition.prototype.$size = function() { return 1; };
/**
* Specifies the sizing function. By default, a sizing function is disabled and
* all nodes are given constant size. The sizing function is invoked for each
* leaf node in the tree (passed to the constructor).
*
* <p>For example, if the tree data structure represents a file system, with
* files as leaf nodes, and each file has a <tt>bytes</tt> attribute, you can
* specify a size function as:
*
* <pre> .size(function(d) d.bytes)</pre>
*
* As with other properties, a size function may specify additional arguments to
* access the data associated with the layout and any enclosing panels.
*
* @param {function} f the new sizing function.
* @returns {pv.Layout.Partition} this.
*/
pv.Layout.Partition.prototype.size = function(f) {
this.$size = f;
return this;
};
/** @private */
pv.Layout.Partition.prototype.buildImplied = function(s) {
if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
var that = this,
root = s.nodes[0],
stack = pv.Mark.stack,
maxDepth = 0;
/* Recursively compute the tree depth and node size. */
stack.unshift(null);
root.visitAfter(function(n, i) {
if (i > maxDepth) maxDepth = i;
n.size = n.firstChild
? pv.sum(n.childNodes, function(n) { return n.size; })
: that.$size.apply(that, (stack[0] = n, stack));
});
stack.shift();
/* Order */
switch (s.order) {
case "ascending": root.sort(function(a, b) { return a.size - b.size; }); break;
case "descending": root.sort(function(b, a) { return a.size - b.size; }); break;
}
/* Compute the unit breadth and depth of each node. */
var ds = 1 / maxDepth;
root.minBreadth = 0;
root.breadth = .5;
root.maxBreadth = 1;
root.visitBefore(function(n) {
var b = n.minBreadth, s = n.maxBreadth - b;
for (var c = n.firstChild; c; c = c.nextSibling) {
c.minBreadth = b;
c.maxBreadth = b += (c.size / n.size) * s;
c.breadth = (b + c.minBreadth) / 2;
}
});
root.visitAfter(function(n, i) {
n.minDepth = (i - 1) * ds;
n.maxDepth = n.depth = i * ds;
});
pv.Layout.Hierarchy.NodeLink.buildImplied.call(this, s);
};
/**
* Constructs a new, empty space-filling partition layout. Layouts are not
* typically constructed directly; instead, they are added to an existing panel
* via {@link pv.Mark#add}.
*
* @class A variant of partition layout that is space-filling. The meaning of
* the exported mark prototypes changes slightly in the space-filling
* implementation:<ul>
*
* <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Bar} for
* non-radial orientations, and a {@link pv.Wedge} for radial orientations.
*
* <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
* in the arrangement of the space-filling nodes.
*
* <p><li><tt>label</tt> - for rendering node labels; typically a
* {@link pv.Label}.
*
* </ul>For more details on how to use this layout, see
* {@link pv.Layout.Partition}.
*
* @extends pv.Layout.Partition
*/
pv.Layout.Partition.Fill = function() {
pv.Layout.Partition.call(this);
pv.Layout.Hierarchy.Fill.constructor.call(this);
};
pv.Layout.Partition.Fill.prototype = pv.extend(pv.Layout.Partition);
/** @private */
pv.Layout.Partition.Fill.prototype.buildImplied = function(s) {
if (pv.Layout.Partition.prototype.buildImplied.call(this, s)) return;
pv.Layout.Hierarchy.Fill.buildImplied.call(this, s);
};
/**
* Constructs a new, empty arc layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a layout for arc diagrams. An arc diagram is a network
* visualization with a one-dimensional layout of nodes, using circular arcs to
* render links between nodes. For undirected networks, arcs are rendering on a
* single side; this makes arc diagrams useful as annotations to other
* two-dimensional network layouts, such as rollup, matrix or table layouts. For
* directed networks, links in opposite directions can be rendered on opposite
* sides using <tt>directed(true)</tt>.
*
* <p>Arc layouts are particularly sensitive to node ordering; for best results,
* order the nodes such that related nodes are close to each other. A poor
* (e.g., random) order may result in large arcs with crossovers that impede
* visual processing. A future improvement to this layout may include automatic
* reordering using, e.g., spectral graph layout or simulated annealing.
*
* <p>This visualization technique is related to that developed by
* M. Wattenberg, <a
* href="http://www.research.ibm.com/visual/papers/arc-diagrams.pdf">"Arc
* Diagrams: Visualizing Structure in Strings"</a> in <i>IEEE InfoVis</i>, 2002.
* However, this implementation is limited to simple node-link networks, as
* opposed to structures with hierarchical self-similarity (such as strings).
*
* <p>As with other network layouts, three mark prototypes are provided:<ul>
*
* <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Dot}.
* <li><tt>link</tt> - for rendering links; typically a {@link pv.Line}.
* <li><tt>label</tt> - for rendering node labels; typically a {@link pv.Label}.
*
* </ul>For more details on how this layout is structured and can be customized,
* see {@link pv.Layout.Network}.
*
* @extends pv.Layout.Network
**/
pv.Layout.Arc = function() {
pv.Layout.Network.call(this);
var interpolate, // cached interpolate
directed, // cached directed
reverse, // cached reverse
buildImplied = this.buildImplied;
/** @private Cache layout state to optimize properties. */
this.buildImplied = function(s) {
buildImplied.call(this, s);
directed = s.directed;
interpolate = s.orient == "radial" ? "linear" : "polar";
reverse = s.orient == "right" || s.orient == "top";
};
/* Override link properties to handle directedness and orientation. */
this.link
.data(function(p) {
var s = p.sourceNode, t = p.targetNode;
return reverse != (directed || (s.breadth < t.breadth)) ? [s, t] : [t, s];
})
.interpolate(function() { return interpolate; });
};
pv.Layout.Arc.prototype = pv.extend(pv.Layout.Network)
.property("orient", String)
.property("directed", Boolean);
/**
* Default properties for arc layouts. By default, the orientation is "bottom".
*
* @type pv.Layout.Arc
*/
pv.Layout.Arc.prototype.defaults = new pv.Layout.Arc()
.extend(pv.Layout.Network.prototype.defaults)
.orient("bottom");
/**
* Specifies an optional sort function. The sort function follows the same
* comparator contract required by {@link pv.Dom.Node#sort}. Specifying a sort
* function provides an alternative to sort the nodes as they are specified by
* the <tt>nodes</tt> property; the main advantage of doing this is that the
* comparator function can access implicit fields populated by the network
* layout, such as the <tt>linkDegree</tt>.
*
* <p>Note that arc diagrams are particularly sensitive to order. This is
* referred to as the seriation problem, and many different techniques exist to
* find good node orders that emphasize clusters, such as spectral layout and
* simulated annealing.
*
* @param {function} f comparator function for nodes.
* @returns {pv.Layout.Arc} this.
*/
pv.Layout.Arc.prototype.sort = function(f) {
this.$sort = f;
return this;
};
/** @private Populates the x, y and angle attributes on the nodes. */
pv.Layout.Arc.prototype.buildImplied = function(s) {
if (pv.Layout.Network.prototype.buildImplied.call(this, s)) return;
var nodes = s.nodes,
orient = s.orient,
sort = this.$sort,
index = pv.range(nodes.length),
w = s.width,
h = s.height,
r = Math.min(w, h) / 2;
/* Sort the nodes. */
if (sort) index.sort(function(a, b) { return sort(nodes[a], nodes[b]); });
/** @private Returns the mid-angle, given the breadth. */
function midAngle(b) {
switch (orient) {
case "top": return -Math.PI / 2;
case "bottom": return Math.PI / 2;
case "left": return Math.PI;
case "right": return 0;
case "radial": return (b - .25) * 2 * Math.PI;
}
}
/** @private Returns the x-position, given the breadth. */
function x(b) {
switch (orient) {
case "top":
case "bottom": return b * w;
case "left": return 0;
case "right": return w;
case "radial": return w / 2 + r * Math.cos(midAngle(b));
}
}
/** @private Returns the y-position, given the breadth. */
function y(b) {
switch (orient) {
case "top": return 0;
case "bottom": return h;
case "left":
case "right": return b * h;
case "radial": return h / 2 + r * Math.sin(midAngle(b));
}
}
/* Populate the x, y and mid-angle attributes. */
for (var i = 0; i < nodes.length; i++) {
var n = nodes[index[i]], b = n.breadth = (i + .5) / nodes.length;
n.x = x(b);
n.y = y(b);
n.midAngle = midAngle(b);
}
};
/**
* The orientation. The default orientation is "left", which means that nodes
* will be positioned from left-to-right in the order they are specified in the
* <tt>nodes</tt> property. The following orientations are supported:<ul>
*
* <li>left - left-to-right.
* <li>right - right-to-left.
* <li>top - top-to-bottom.
* <li>bottom - bottom-to-top.
* <li>radial - radially, starting at 12 o'clock and proceeding clockwise.</ul>
*
* @type string
* @name pv.Layout.Arc.prototype.orient
*/
/**
* Whether this arc digram is directed (bidirectional); only applies to
* non-radial orientations. By default, arc digrams are undirected, such that
* all arcs appear on one side. If the arc digram is directed, then forward
* links are drawn on the conventional side (the same as as undirected
* links--right, left, bottom and top for left, right, top and bottom,
* respectively), while reverse links are drawn on the opposite side.
*
* @type boolean
* @name pv.Layout.Arc.prototype.directed
*/
/**
* Constructs a new, empty horizon layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a horizon layout, which is a variation of a single-series
* area chart where the area is folded into multiple bands. Color is used to
* encode band, allowing the size of the chart to be reduced significantly
* without impeding readability. This layout algorithm is based on the work of
* J. Heer, N. Kong and M. Agrawala in <a
* href="http://hci.stanford.edu/publications/2009/heer-horizon-chi09.pdf">"Sizing
* the Horizon: The Effects of Chart Size and Layering on the Graphical
* Perception of Time Series Visualizations"</a>, CHI 2009.
*
* <p>This layout exports a single <tt>band</tt> mark prototype, which is
* intended to be used with an area mark. The band mark is contained in a panel
* which is replicated per band (and for negative/positive bands). For example,
* to create a simple horizon graph given an array of numbers:
*
* <pre>vis.add(pv.Layout.Horizon)
* .bands(n)
* .band.add(pv.Area)
* .data(data)
* .left(function() this.index * 35)
* .height(function(d) d * 40);</pre>
*
* The layout can be further customized by changing the number of bands, and
* toggling whether the negative bands are mirrored or offset. (See the
* above-referenced paper for guidance.)
*
* <p>The <tt>fillStyle</tt> of the area can be overridden, though typically it
* is easier to customize the layout's behavior through the custom
* <tt>backgroundStyle</tt>, <tt>positiveStyle</tt> and <tt>negativeStyle</tt>
* properties. By default, the background is white, positive bands are blue, and
* negative bands are red. For the most accurate presentation, use fully-opaque
* colors of equal intensity for the negative and positive bands.
*
* @extends pv.Layout
*/
pv.Layout.Horizon = function() {
pv.Layout.call(this);
var that = this,
bands, // cached bands
mode, // cached mode
size, // cached height
fill, // cached background style
red, // cached negative color (ramp)
blue, // cached positive color (ramp)
buildImplied = this.buildImplied;
/** @private Cache the layout state to optimize properties. */
this.buildImplied = function(s) {
buildImplied.call(this, s);
bands = s.bands;
mode = s.mode;
size = Math.round((mode == "color" ? .5 : 1) * s.height);
fill = s.backgroundStyle;
red = pv.ramp(fill, s.negativeStyle).domain(0, bands);
blue = pv.ramp(fill, s.positiveStyle).domain(0, bands);
};
var bands = new pv.Panel()
.data(function() { return pv.range(bands * 2); })
.overflow("hidden")
.height(function() { return size; })
.top(function(i) { return mode == "color" ? (i & 1) * size : 0; })
.fillStyle(function(i) { return i ? null : fill; });
/**
* The band prototype. This prototype is intended to be used with an Area
* mark to render the horizon bands.
*
* @type pv.Mark
* @name pv.Layout.Horizon.prototype.band
*/
this.band = new pv.Mark()
.top(function(d, i) {
return mode == "mirror" && i & 1
? (i + 1 >> 1) * size
: null;
})
.bottom(function(d, i) {
return mode == "mirror"
? (i & 1 ? null : (i + 1 >> 1) * -size)
: ((i & 1 || -1) * (i + 1 >> 1) * size);
})
.fillStyle(function(d, i) {
return (i & 1 ? red : blue)((i >> 1) + 1);
});
this.band.add = function(type) {
return that.add(pv.Panel).extend(bands).add(type).extend(this);
};
};
pv.Layout.Horizon.prototype = pv.extend(pv.Layout)
.property("bands", Number)
.property("mode", String)
.property("backgroundStyle", pv.color)
.property("positiveStyle", pv.color)
.property("negativeStyle", pv.color);
/**
* Default properties for horizon layouts. By default, there are two bands, the
* mode is "offset", the background style is "white", the positive style is
* blue, negative style is red.
*
* @type pv.Layout.Horizon
*/
pv.Layout.Horizon.prototype.defaults = new pv.Layout.Horizon()
.extend(pv.Layout.prototype.defaults)
.bands(2)
.mode("offset")
.backgroundStyle("white")
.positiveStyle("#1f77b4")
.negativeStyle("#d62728");
/**
* The horizon mode: offset, mirror, or color. The default is "offset".
*
* @type string
* @name pv.Layout.Horizon.prototype.mode
*/
/**
* The number of bands. Must be at least one. The default value is two.
*
* @type number
* @name pv.Layout.Horizon.prototype.bands
*/
/**
* The positive band color; if non-null, the interior of positive bands are
* filled with the specified color. The default value of this property is blue.
* For accurate blending, this color should be fully opaque.
*
* @type pv.Color
* @name pv.Layout.Horizon.prototype.positiveStyle
*/
/**
* The negative band color; if non-null, the interior of negative bands are
* filled with the specified color. The default value of this property is red.
* For accurate blending, this color should be fully opaque.
*
* @type pv.Color
* @name pv.Layout.Horizon.prototype.negativeStyle
*/
/**
* The background color. The panel background is filled with the specified
* color, and the negative and positive bands are filled with an interpolated
* color between this color and the respective band color. The default value of
* this property is white. For accurate blending, this color should be fully
* opaque.
*
* @type pv.Color
* @name pv.Layout.Horizon.prototype.backgroundStyle
*/
/**
* Constructs a new, empty rollup network layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a network visualization using a node-link diagram where
* nodes are rolled up along two dimensions. This implementation is based on the
* "PivotGraph" designed by Martin Wattenberg:
*
* <blockquote>The method is designed for graphs that are "multivariate", i.e.,
* where each node is associated with several attributes. Unlike visualizations
* which emphasize global graph topology, PivotGraph uses a simple grid-based
* approach to focus on the relationship between node attributes &amp;
* connections.</blockquote>
*
* This layout requires two psuedo-properties to be specified, which assign node
* positions along the two dimensions {@link #x} and {@link #y}, corresponding
* to the left and top properties, respectively. Typically, these functions are
* specified using an {@link pv.Scale.ordinal}. Nodes that share the same
* position in <i>x</i> and <i>y</i> are "rolled up" into a meta-node, and
* similarly links are aggregated between meta-nodes. For example, to construct
* a rollup to analyze links by gender and affiliation, first define two ordinal
* scales:
*
* <pre>var x = pv.Scale.ordinal(nodes, function(d) d.gender).split(0, w),
* y = pv.Scale.ordinal(nodes, function(d) d.aff).split(0, h);</pre>
*
* Next, define the position psuedo-properties:
*
* <pre> .x(function(d) x(d.gender))
* .y(function(d) y(d.aff))</pre>
*
* Linear and other quantitative scales can alternatively be used to position
* the nodes along either dimension. Note, however, that the rollup requires
* that the positions match exactly, and thus ordinal scales are recommended to
* avoid precision errors.
*
* <p>Note that because this layout provides a visualization of the rolled up
* graph, the data properties for the mark prototypes (<tt>node</tt>,
* <tt>link</tt> and <tt>label</tt>) are different from most other network
* layouts: they reference the rolled-up nodes and links, rather than the nodes
* and links of the full network. The underlying nodes and links for each
* rolled-up node and link can be accessed via the <tt>nodes</tt> and
* <tt>links</tt> attributes, respectively. The aggregated link values for
* rolled-up links can similarly be accessed via the <tt>linkValue</tt>
* attribute.
*
* <p>For undirected networks, links are duplicated in both directions. For
* directed networks, use <tt>directed(true)</tt>. The graph is assumed to be
* undirected by default.
*
* @extends pv.Layout.Network
* @see <a href="http://www.research.ibm.com/visual/papers/pivotgraph.pdf"
* >"Visual Exploration of Multivariate Graphs"</a> by M. Wattenberg, CHI 2006.
*/
pv.Layout.Rollup = function() {
pv.Layout.Network.call(this);
var that = this,
nodes, // cached rollup nodes
links, // cached rollup links
buildImplied = that.buildImplied;
/** @private Cache layout state to optimize properties. */
this.buildImplied = function(s) {
buildImplied.call(this, s);
nodes = s.$rollup.nodes;
links = s.$rollup.links;
};
/* Render rollup nodes. */
this.node
.data(function() { return nodes; })
.size(function(d) { return d.nodes.length * 20; });
/* Render rollup links. */
this.link
.interpolate("polar")
.eccentricity(.8);
this.link.add = function(type) {
return that.add(pv.Panel)
.data(function() { return links; })
.add(type)
.extend(this);
};
};
pv.Layout.Rollup.prototype = pv.extend(pv.Layout.Network)
.property("directed", Boolean);
/**
* Whether the underlying network is directed. By default, the graph is assumed
* to be undirected, and links are rendered in both directions. If the network
* is directed, then forward links are drawn above the diagonal, while reverse
* links are drawn below.
*
* @type boolean
* @name pv.Layout.Rollup.prototype.directed
*/
/**
* Specifies the <i>x</i>-position function used to rollup nodes. The rolled up
* nodes are positioned horizontally using the return values from the given
* function. Typically the function is specified as an ordinal scale. For
* single-dimension rollups, a constant value can be specified.
*
* @param {function} f the <i>x</i>-position function.
* @returns {pv.Layout.Rollup} this.
* @see pv.Scale.ordinal
*/
pv.Layout.Rollup.prototype.x = function(f) {
this.$x = pv.functor(f);
return this;
};
/**
* Specifies the <i>y</i>-position function used to rollup nodes. The rolled up
* nodes are positioned vertically using the return values from the given
* function. Typically the function is specified as an ordinal scale. For
* single-dimension rollups, a constant value can be specified.
*
* @param {function} f the <i>y</i>-position function.
* @returns {pv.Layout.Rollup} this.
* @see pv.Scale.ordinal
*/
pv.Layout.Rollup.prototype.y = function(f) {
this.$y = pv.functor(f);
return this;
};
/** @private */
pv.Layout.Rollup.prototype.buildImplied = function(s) {
if (pv.Layout.Network.prototype.buildImplied.call(this, s)) return;
var nodes = s.nodes,
links = s.links,
directed = s.directed,
n = nodes.length,
x = [],
y = [],
rnindex = 0,
rnodes = {},
rlinks = {};
/** @private */
function id(i) {
return x[i] + "," + y[i];
}
/* Iterate over the data, evaluating the x and y functions. */
var stack = pv.Mark.stack, o = {parent: this};
stack.unshift(null);
for (var i = 0; i < n; i++) {
o.index = i;
stack[0] = nodes[i];
x[i] = this.$x.apply(o, stack);
y[i] = this.$y.apply(o, stack);
}
stack.shift();
/* Compute rollup nodes. */
for (var i = 0; i < nodes.length; i++) {
var nodeId = id(i),
rn = rnodes[nodeId];
if (!rn) {
rn = rnodes[nodeId] = pv.extend(nodes[i]);
rn.index = rnindex++;
rn.x = x[i];
rn.y = y[i];
rn.nodes = [];
}
rn.nodes.push(nodes[i]);
}
/* Compute rollup links. */
for (var i = 0; i < links.length; i++) {
var source = links[i].sourceNode,
target = links[i].targetNode,
rsource = rnodes[id(source.index)],
rtarget = rnodes[id(target.index)],
reverse = !directed && rsource.index > rtarget.index,
linkId = reverse
? rtarget.index + "," + rsource.index
: rsource.index + "," + rtarget.index,
rl = rlinks[linkId];
if (!rl) {
rl = rlinks[linkId] = {
sourceNode: rsource,
targetNode: rtarget,
linkValue: 0,
links: []
};
}
rl.links.push(links[i]);
rl.linkValue += links[i].linkValue;
}
/* Export the rolled up nodes and links to the scene. */
s.$rollup = {
nodes: pv.values(rnodes),
links: pv.values(rlinks)
};
};
/**
* Constructs a new, empty matrix network layout. Layouts are not typically
* constructed directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class Implements a network visualization using a matrix view. This is, in
* effect, a visualization of the graph's <i>adjacency matrix</i>: the cell at
* row <i>i</i>, column <i>j</i>, corresponds to the link from node <i>i</i> to
* node <i>j</i>. The fill color of each cell is binary by default, and
* corresponds to whether a link exists between the two nodes. If the underlying
* graph has links with variable values, the <tt>fillStyle</tt> property can be
* substited to use an appropriate color function, such as {@link pv.ramp}.
*
* <p>For undirected networks, the matrix is symmetric around the diagonal. For
* directed networks, links in opposite directions can be rendered on opposite
* sides of the diagonal using <tt>directed(true)</tt>. The graph is assumed to
* be undirected by default.
*
* <p>The mark prototypes for this network layout are slightly different than
* other implementations:<ul>
*
* <li><tt>node</tt> - unsupported; undefined. No mark is needed to visualize
* nodes directly, as the nodes are implicit in the location (rows and columns)
* of the links.
*
* <p><li><tt>link</tt> - for rendering links; typically a {@link pv.Bar}. The
* link mark is added directly to the layout, with the data property defined as
* all possible pairs of nodes. Each pair is represented as a
* {@link pv.Network.Layout.Link}, though the <tt>linkValue</tt> attribute may
* be 0 if no link exists in the graph.
*
* <p><li><tt>label</tt> - for rendering node labels; typically a
* {@link pv.Label}. The label mark is added directly to the layout, with the
* data property defined via the layout's <tt>nodes</tt> property; note,
* however, that the nodes are duplicated so as to provide a label across the
* top and down the side. Properties such as <tt>strokeStyle</tt> and
* <tt>fillStyle</tt> can be overridden to compute properties from node data
* dynamically.
*
* </ul>For more details on how to use this layout, see
* {@link pv.Layout.Network}.
*
* @extends pv.Layout.Network
*/
pv.Layout.Matrix = function() {
pv.Layout.Network.call(this);
var that = this,
n, // cached matrix size
dx, // cached cell width
dy, // cached cell height
labels, // cached labels (array of strings)
pairs, // cached pairs (array of links)
buildImplied = that.buildImplied;
/** @private Cache layout state to optimize properties. */
this.buildImplied = function(s) {
buildImplied.call(this, s);
n = s.nodes.length;
dx = s.width / n;
dy = s.height / n;
labels = s.$matrix.labels;
pairs = s.$matrix.pairs;
};
/* Links are all pairs of nodes. */
this.link
.data(function() { return pairs; })
.left(function() { return dx * (this.index % n); })
.top(function() { return dy * Math.floor(this.index / n); })
.width(function() { return dx; })
.height(function() { return dy; })
.lineWidth(1.5)
.strokeStyle("#fff")
.fillStyle(function(l) { return l.linkValue ? "#555" : "#eee"; })
.parent = this;
/* No special add for links! */
delete this.link.add;
/* Labels are duplicated for top & left. */
this.label
.data(function() { return labels; })
.left(function() { return this.index & 1 ? dx * ((this.index >> 1) + .5) : 0; })
.top(function() { return this.index & 1 ? 0 : dy * ((this.index >> 1) + .5); })
.textMargin(4)
.textAlign(function() { return this.index & 1 ? "left" : "right"; })
.textAngle(function() { return this.index & 1 ? -Math.PI / 2 : 0; });
/* The node mark is unused. */
delete this.node;
};
pv.Layout.Matrix.prototype = pv.extend(pv.Layout.Network)
.property("directed", Boolean);
/**
* Whether this matrix visualization is directed (bidirectional). By default,
* the graph is assumed to be undirected, such that the visualization is
* symmetric across the matrix diagonal. If the network is directed, then
* forward links are drawn above the diagonal, while reverse links are drawn
* below.
*
* @type boolean
* @name pv.Layout.Matrix.prototype.directed
*/
/**
* Specifies an optional sort function. The sort function follows the same
* comparator contract required by {@link pv.Dom.Node#sort}. Specifying a sort
* function provides an alternative to sort the nodes as they are specified by
* the <tt>nodes</tt> property; the main advantage of doing this is that the
* comparator function can access implicit fields populated by the network
* layout, such as the <tt>linkDegree</tt>.
*
* <p>Note that matrix visualizations are particularly sensitive to order. This
* is referred to as the seriation problem, and many different techniques exist
* to find good node orders that emphasize clusters, such as spectral layout and
* simulated annealing.
*
* @param {function} f comparator function for nodes.
* @returns {pv.Layout.Matrix} this.
*/
pv.Layout.Matrix.prototype.sort = function(f) {
this.$sort = f;
return this;
};
/** @private */
pv.Layout.Matrix.prototype.buildImplied = function(s) {
if (pv.Layout.Network.prototype.buildImplied.call(this, s)) return;
var nodes = s.nodes,
links = s.links,
sort = this.$sort,
n = nodes.length,
index = pv.range(n),
labels = [],
pairs = [],
map = {};
s.$matrix = {labels: labels, pairs: pairs};
/* Sort the nodes. */
if (sort) index.sort(function(a, b) { return sort(nodes[a], nodes[b]); });
/* Create pairs. */
for (var i = 0; i < n; i++) {
for (var j = 0; j < n; j++) {
var a = index[i],
b = index[j],
p = {
row: i,
col: j,
sourceNode: nodes[a],
targetNode: nodes[b],
linkValue: 0
};
pairs.push(map[a + "." + b] = p);
}
}
/* Create labels. */
for (var i = 0; i < n; i++) {
var a = index[i];
labels.push(nodes[a], nodes[a]);
}
/* Accumulate link values. */
for (var i = 0; i < links.length; i++) {
var l = links[i],
source = l.sourceNode.index,
target = l.targetNode.index,
value = l.linkValue;
map[source + "." + target].linkValue += value;
if (!s.directed) map[target + "." + source].linkValue += value;
}
};
// ranges (bad, satisfactory, good)
// measures (actual, forecast)
// markers (previous, goal)
/*
* Chart design based on the recommendations of Stephen Few. Implementation
* based on the work of Clint Ivy, Jamie Love, and Jason Davies.
* http://projects.instantcognition.com/protovis/bulletchart/
*/
/**
* Constructs a new, empty bullet layout. Layouts are not typically constructed
* directly; instead, they are added to an existing panel via
* {@link pv.Mark#add}.
*
* @class
* @extends pv.Layout
*/
pv.Layout.Bullet = function() {
pv.Layout.call(this);
var that = this,
buildImplied = that.buildImplied,
scale = that.x = pv.Scale.linear(),
orient,
horizontal,
rangeColor,
measureColor,
x;
/** @private Cache layout state to optimize properties. */
this.buildImplied = function(s) {
buildImplied.call(this, x = s);
orient = s.orient;
horizontal = /^left|right$/.test(orient);
rangeColor = pv.ramp("#bbb", "#eee")
.domain(0, Math.max(1, x.ranges.length - 1));
measureColor = pv.ramp("steelblue", "lightsteelblue")
.domain(0, Math.max(1, x.measures.length - 1));
};
/**
* The range prototype.
*
* @type pv.Mark
* @name pv.Layout.Bullet.prototype.range
*/
(this.range = new pv.Mark())
.data(function() { return x.ranges; })
.reverse(true)
.left(function() { return orient == "left" ? 0 : null; })
.top(function() { return orient == "top" ? 0 : null; })
.right(function() { return orient == "right" ? 0 : null; })
.bottom(function() { return orient == "bottom" ? 0 : null; })
.width(function(d) { return horizontal ? scale(d) : null; })
.height(function(d) { return horizontal ? null : scale(d); })
.fillStyle(function() { return rangeColor(this.index); })
.antialias(false)
.parent = that;
/**
* The measure prototype.
*
* @type pv.Mark
* @name pv.Layout.Bullet.prototype.measure
*/
(this.measure = new pv.Mark())
.extend(this.range)
.data(function() { return x.measures; })
.left(function() { return orient == "left" ? 0 : horizontal ? null : this.parent.width() / 3.25; })
.top(function() { return orient == "top" ? 0 : horizontal ? this.parent.height() / 3.25 : null; })
.right(function() { return orient == "right" ? 0 : horizontal ? null : this.parent.width() / 3.25; })
.bottom(function() { return orient == "bottom" ? 0 : horizontal ? this.parent.height() / 3.25 : null; })
.fillStyle(function() { return measureColor(this.index); })
.parent = that;
/**
* The marker prototype.
*
* @type pv.Mark
* @name pv.Layout.Bullet.prototype.marker
*/
(this.marker = new pv.Mark())
.data(function() { return x.markers; })
.left(function(d) { return orient == "left" ? scale(d) : horizontal ? null : this.parent.width() / 2; })
.top(function(d) { return orient == "top" ? scale(d) : horizontal ? this.parent.height() / 2 : null; })
.right(function(d) { return orient == "right" ? scale(d) : null; })
.bottom(function(d) { return orient == "bottom" ? scale(d) : null; })
.strokeStyle("black")
.shape("bar")
.angle(function() { return horizontal ? 0 : Math.PI / 2; })
.parent = that;
(this.tick = new pv.Mark())
.data(function() { return scale.ticks(7); })
.left(function(d) { return orient == "left" ? scale(d) : null; })
.top(function(d) { return orient == "top" ? scale(d) : null; })
.right(function(d) { return orient == "right" ? scale(d) : horizontal ? null : -6; })
.bottom(function(d) { return orient == "bottom" ? scale(d) : horizontal ? -8 : null; })
.height(function() { return horizontal ? 6 : null; })
.width(function() { return horizontal ? null : 6; })
.parent = that;
};
pv.Layout.Bullet.prototype = pv.extend(pv.Layout)
.property("orient", String) // left, right, top, bottom
.property("ranges")
.property("markers")
.property("measures")
.property("maximum", Number);
/**
* Default properties for bullet layouts.
*
* @type pv.Layout.Bullet
*/
pv.Layout.Bullet.prototype.defaults = new pv.Layout.Bullet()
.extend(pv.Layout.prototype.defaults)
.orient("left")
.ranges([])
.markers([])
.measures([]);
/**
* The orientation.
*
* @type string
* @name pv.Layout.Bullet.prototype.orient
*/
/**
* The array of range values.
*
* @type array
* @name pv.Layout.Bullet.prototype.ranges
*/
/**
* The array of marker values.
*
* @type array
* @name pv.Layout.Bullet.prototype.markers
*/
/**
* The array of measure values.
*
* @type array
* @name pv.Layout.Bullet.prototype.measures
*/
/**
* Optional; the maximum range value.
*
* @type number
* @name pv.Layout.Bullet.prototype.maximum
*/
/** @private */
pv.Layout.Bullet.prototype.buildImplied = function(s) {
pv.Layout.prototype.buildImplied.call(this, s);
var size = this.parent[/^left|right$/.test(s.orient) ? "width" : "height"]();
s.maximum = s.maximum || pv.max([].concat(s.ranges, s.markers, s.measures));
this.x.domain(0, s.maximum).range(0, size);
};
/**
* Abstract; see an implementing class for details.
*
* @class Represents a reusable interaction; applies an interactive behavior to
* a given mark. Behaviors are themselves functions designed to be used as event
* handlers. For example, to add pan and zoom support to any panel, say:
*
* <pre> .event("mousedown", pv.Behavior.pan())
* .event("mousewheel", pv.Behavior.zoom())</pre>
*
* The behavior should be registered on the event that triggers the start of the
* behavior. Typically, the behavior will take care of registering for any
* additional events that are necessary. For example, dragging starts on
* mousedown, while the drag behavior automatically listens for mousemove and
* mouseup events on the window. By listening to the window, the behavior can
* continue to receive mouse events even if the mouse briefly leaves the mark
* being dragged, or even the root panel.
*
* <p>Each behavior implementation has specific requirements as to which events
* it supports, and how it should be used. For example, the drag behavior
* requires that the data associated with the mark be an object with <tt>x</tt>
* and <tt>y</tt> attributes, such as a {@link pv.Vector}, storing the mark's
* position. See an implementing class for details.
*
* @see pv.Behavior.drag
* @see pv.Behavior.pan
* @see pv.Behavior.point
* @see pv.Behavior.select
* @see pv.Behavior.zoom
* @extends function
*/
pv.Behavior = {};
/**
* Returns a new drag behavior to be registered on mousedown events.
*
* @class Implements interactive dragging starting with mousedown events.
* Register this behavior on marks that should be draggable by the user, such as
* the selected region for brushing and linking. This behavior can be used in
* tandom with {@link pv.Behavior.select} to allow the selected region to be
* dragged interactively.
*
* <p>After the initial mousedown event is triggered, this behavior listens for
* mousemove and mouseup events on the window. This allows dragging to continue
* even if the mouse temporarily leaves the mark that is being dragged, or even
* the root panel.
*
* <p>This behavior requires that the data associated with the mark being
* dragged have <tt>x</tt> and <tt>y</tt> attributes that correspond to the
* mark's location in pixels. The mark's positional properties are not set
* directly by this behavior; instead, the positional properties should be
* defined as:
*
* <pre> .left(function(d) d.x)
* .top(function(d) d.y)</pre>
*
* Thus, the behavior does not move the mark directly, but instead updates the
* mark position by updating the underlying data. Note that if the positional
* properties are defined with bottom and right (rather than top and left), the
* drag behavior will be inverted, which will confuse users!
*
* <p>The drag behavior is bounded by the parent panel; the <tt>x</tt> and
* <tt>y</tt> attributes are clamped such that the mark being dragged does not
* extend outside the enclosing panel's bounds. To facilitate this, the drag
* behavior also queries for <tt>dx</tt> and <tt>dy</tt> attributes on the
* underlying data, to determine the dimensions of the bar being dragged. For
* non-rectangular marks, the drag behavior simply treats the mark as a point,
* which means that only the mark's center is bounded.
*
* <p>The mark being dragged is automatically re-rendered for each mouse event
* as part of the drag operation. In addition, a <tt>fix</tt> attribute is
* populated on the mark, which allows visual feedback for dragging. For
* example, to change the mark fill color while dragging:
*
* <pre> .fillStyle(function(d) d.fix ? "#ff7f0e" : "#aec7e8")</pre>
*
* In some cases, such as with network layouts, dragging the mark may cause
* related marks to change, in which case additional marks may also need to be
* rendered. This can be accomplished by listening for the drag
* psuedo-events:<ul>
*
* <li>dragstart (on mousedown)
* <li>drag (on mousemove)
* <li>dragend (on mouseup)
*
* </ul>For example, to render the parent panel while dragging, thus
* re-rendering all sibling marks:
*
* <pre> .event("mousedown", pv.Behavior.drag())
* .event("drag", function() this.parent)</pre>
*
* This behavior may be enhanced in the future to allow more flexible
* configuration of drag behavior.
*
* @extends pv.Behavior
* @see pv.Behavior
* @see pv.Behavior.select
* @see pv.Layout.force
*/
pv.Behavior.drag = function() {
var scene, // scene context
index, // scene context
p, // particle being dragged
v1, // initial mouse-particle offset
max;
/** @private */
function mousedown(d) {
index = this.index;
scene = this.scene;
var m = this.mouse();
v1 = ((p = d).fix = pv.vector(d.x, d.y)).minus(m);
max = {
x: this.parent.width() - (d.dx || 0),
y: this.parent.height() - (d.dy || 0)
};
scene.mark.context(scene, index, function() { this.render(); });
pv.Mark.dispatch("dragstart", scene, index);
}
/** @private */
function mousemove() {
if (!scene) return;
scene.mark.context(scene, index, function() {
var m = this.mouse();
p.x = p.fix.x = Math.max(0, Math.min(v1.x + m.x, max.x));
p.y = p.fix.y = Math.max(0, Math.min(v1.y + m.y, max.y));
this.render();
});
pv.Mark.dispatch("drag", scene, index);
}
/** @private */
function mouseup() {
if (!scene) return;
p.fix = null;
scene.mark.context(scene, index, function() { this.render(); });
pv.Mark.dispatch("dragend", scene, index);
scene = null;
}
pv.listen(window, "mousemove", mousemove);
pv.listen(window, "mouseup", mouseup);
return mousedown;
};
/**
* Returns a new point behavior to be registered on mousemove events.
*
* @class Implements interactive fuzzy pointing, identifying marks that are in
* close proximity to the mouse cursor. This behavior is an alternative to the
* native mouseover and mouseout events, improving usability. Rather than
* requiring the user to mouseover a mark exactly, the mouse simply needs to
* move near the given mark and a "point" event is triggered. In addition, if
* multiple marks overlap, the point behavior can be used to identify the mark
* instance closest to the cursor, as opposed to the one that is rendered on
* top.
*
* <p>The point behavior can also identify the closest mark instance for marks
* that produce a continuous graphic primitive. The point behavior can thus be
* used to provide details-on-demand for both discrete marks (such as dots and
* bars), as well as continuous marks (such as lines and areas).
*
* <p>This behavior is implemented by finding the closest mark instance to the
* mouse cursor on every mousemove event. If this closest mark is within the
* given radius threshold, which defaults to 30 pixels, a "point" psuedo-event
* is dispatched to the given mark instance. If any mark were previously
* pointed, it would receive a corresponding "unpoint" event. These two
* psuedo-event types correspond to the native "mouseover" and "mouseout"
* events, respectively. To increase the radius at which the point behavior can
* be applied, specify an appropriate threshold to the constructor, up to
* <tt>Infinity</tt>.
*
* <p>By default, the standard Cartesian distance is computed. However, with
* some visualizations it is desirable to consider only a single dimension, such
* as the <i>x</i>-dimension for an independent variable. In this case, the
* collapse parameter can be set to collapse the <i>y</i> dimension:
*
* <pre> .event("mousemove", pv.Behavior.point(Infinity).collapse("y"))</pre>
*
* <p>This behavior only listens to mousemove events on the assigned panel,
* which is typically the root panel. The behavior will search recursively for
* descendant marks to point. If the mouse leaves the assigned panel, the
* behavior no longer receives mousemove events; an unpoint psuedo-event is
* automatically dispatched to unpoint any pointed mark. Marks may be re-pointed
* when the mouse reenters the panel.
*
* <p>Panels have transparent fill styles by default; this means that panels may
* not receive the initial mousemove event to start pointing. To fix this
* problem, either given the panel a visible fill style (such as "white"), or
* set the <tt>events</tt> property to "all" such that the panel receives events
* despite its transparent fill.
*
* <p>Note: this behavior does not currently wedge marks.
*
* @extends pv.Behavior
*
* @param {number} [r] the fuzzy radius threshold in pixels
* @see <a href="http://www.tovigrossman.com/papers/chi2005bubblecursor.pdf"
* >"The Bubble Cursor: Enhancing Target Acquisition by Dynamic Resizing of the
* Cursor's Activation Area"</a> by T. Grossman &amp; R. Balakrishnan, CHI 2005.
*/
pv.Behavior.point = function(r) {
var unpoint, // the current pointer target
collapse = null, // dimensions to collapse
kx = 1, // x-dimension cost scale
ky = 1, // y-dimension cost scale
r2 = arguments.length ? r * r : 900; // fuzzy radius
/** @private Search for the mark closest to the mouse. */
function search(scene, index) {
var s = scene[index],
point = {cost: Infinity};
for (var i = 0, n = s.visible && s.children.length; i < n; i++) {
var child = s.children[i], mark = child.mark, p;
if (mark.type == "panel") {
mark.scene = child;
for (var j = 0, m = child.length; j < m; j++) {
mark.index = j;
p = search(child, j);
if (p.cost < point.cost) point = p;
}
delete mark.scene;
delete mark.index;
} else if (mark.$handlers.point) {
var v = mark.mouse();
for (var j = 0, m = child.length; j < m; j++) {
var c = child[j],
dx = v.x - c.left - (c.width || 0) / 2,
dy = v.y - c.top - (c.height || 0) / 2,
dd = kx * dx * dx + ky * dy * dy;
if (dd < point.cost) {
point.distance = dx * dx + dy * dy;
point.cost = dd;
point.scene = child;
point.index = j;
}
}
}
}
return point;
}
/** @private */
function mousemove() {
/* If the closest mark is far away, clear the current target. */
var point = search(this.scene, this.index);
if ((point.cost == Infinity) || (point.distance > r2)) point = null;
/* Unpoint the old target, if it's not the new target. */
if (unpoint) {
if (point
&& (unpoint.scene == point.scene)
&& (unpoint.index == point.index)) return;
pv.Mark.dispatch("unpoint", unpoint.scene, unpoint.index);
}
/* Point the new target, if there is one. */
if (unpoint = point) {
pv.Mark.dispatch("point", point.scene, point.index);
/* Unpoint when the mouse leaves the root panel. */
pv.listen(this.root.canvas(), "mouseout", mouseout);
}
}
/** @private */
function mouseout(e) {
if (unpoint && !pv.ancestor(this, e.relatedTarget)) {
pv.Mark.dispatch("unpoint", unpoint.scene, unpoint.index);
unpoint = null;
}
}
/**
* Sets or gets the collapse parameter. By default, the standard Cartesian
* distance is computed. However, with some visualizations it is desirable to
* consider only a single dimension, such as the <i>x</i>-dimension for an
* independent variable. In this case, the collapse parameter can be set to
* collapse the <i>y</i> dimension:
*
* <pre> .event("mousemove", pv.Behavior.point(Infinity).collapse("y"))</pre>
*
* @function
* @returns {pv.Behavior.point} this, or the current collapse parameter.
* @name pv.Behavior.point.prototype.collapse
* @param {string} [x] the new collapse parameter
*/
mousemove.collapse = function(x) {
if (arguments.length) {
collapse = String(x);
switch (collapse) {
case "y": kx = 1; ky = 0; break;
case "x": kx = 0; ky = 1; break;
default: kx = 1; ky = 1; break;
}
return mousemove;
}
return collapse;
};
return mousemove;
};
/**
* Returns a new select behavior to be registered on mousedown events.
*
* @class Implements interactive selecting starting with mousedown events.
* Register this behavior on panels that should be selectable by the user, such
* for brushing and linking. This behavior can be used in tandom with
* {@link pv.Behavior.drag} to allow the selected region to be dragged
* interactively.
*
* <p>After the initial mousedown event is triggered, this behavior listens for
* mousemove and mouseup events on the window. This allows selecting to continue
* even if the mouse temporarily leaves the assigned panel, or even the root
* panel.
*
* <p>This behavior requires that the data associated with the mark being
* dragged have <tt>x</tt>, <tt>y</tt>, <tt>dx</tt> and <tt>dy</tt> attributes
* that correspond to the mark's location and dimensions in pixels. The mark's
* positional properties are not set directly by this behavior; instead, the
* positional properties should be defined as:
*
* <pre> .left(function(d) d.x)
* .top(function(d) d.y)
* .width(function(d) d.dx)
* .height(function(d) d.dy)</pre>
*
* Thus, the behavior does not resize the mark directly, but instead updates the
* selection by updating the assigned panel's underlying data. Note that if the
* positional properties are defined with bottom and right (rather than top and
* left), the drag behavior will be inverted, which will confuse users!
*
* <p>The select behavior is bounded by the assigned panel; the positional
* attributes are clamped such that the selection does not extend outside the
* panel's bounds.
*
* <p>The panel being selected is automatically re-rendered for each mouse event
* as part of the drag operation. This behavior may be enhanced in the future to
* allow more flexible configuration of select behavior. In some cases, such as
* with parallel coordinates, making a selection may cause related marks to
* change, in which case additional marks may also need to be rendered. This can
* be accomplished by listening for the select psuedo-events:<ul>
*
* <li>selectstart (on mousedown)
* <li>select (on mousemove)
* <li>selectend (on mouseup)
*
* </ul>For example, to render the parent panel while selecting, thus
* re-rendering all sibling marks:
*
* <pre> .event("mousedown", pv.Behavior.drag())
* .event("select", function() this.parent)</pre>
*
* This behavior may be enhanced in the future to allow more flexible
* configuration of the selection behavior.
*
* @extends pv.Behavior
* @see pv.Behavior.drag
*/
pv.Behavior.select = function() {
var scene, // scene context
index, // scene context
r, // region being selected
m1; // initial mouse position
/** @private */
function mousedown(d) {
index = this.index;
scene = this.scene;
m1 = this.mouse();
r = d;
r.x = m1.x;
r.y = m1.y;
r.dx = r.dy = 0;
pv.Mark.dispatch("selectstart", scene, index);
}
/** @private */
function mousemove() {
if (!scene) return;
scene.mark.context(scene, index, function() {
var m2 = this.mouse();
r.x = Math.max(0, Math.min(m1.x, m2.x));
r.y = Math.max(0, Math.min(m1.y, m2.y));
r.dx = Math.min(this.width(), Math.max(m2.x, m1.x)) - r.x;
r.dy = Math.min(this.height(), Math.max(m2.y, m1.y)) - r.y;
this.render();
});
pv.Mark.dispatch("select", scene, index);
}
/** @private */
function mouseup() {
if (!scene) return;
pv.Mark.dispatch("selectend", scene, index);
scene = null;
}
pv.listen(window, "mousemove", mousemove);
pv.listen(window, "mouseup", mouseup);
return mousedown;
};
/**
* Returns a new resize behavior to be registered on mousedown events.
*
* @class Implements interactive resizing of a selection starting with mousedown
* events. Register this behavior on selection handles that should be resizeable
* by the user, such for brushing and linking. This behavior can be used in
* tandom with {@link pv.Behavior.select} and {@link pv.Behavior.drag} to allow
* the selected region to be selected and dragged interactively.
*
* <p>After the initial mousedown event is triggered, this behavior listens for
* mousemove and mouseup events on the window. This allows resizing to continue
* even if the mouse temporarily leaves the assigned panel, or even the root
* panel.
*
* <p>This behavior requires that the data associated with the mark being
* resized have <tt>x</tt>, <tt>y</tt>, <tt>dx</tt> and <tt>dy</tt> attributes
* that correspond to the mark's location and dimensions in pixels. The mark's
* positional properties are not set directly by this behavior; instead, the
* positional properties should be defined as:
*
* <pre> .left(function(d) d.x)
* .top(function(d) d.y)
* .width(function(d) d.dx)
* .height(function(d) d.dy)</pre>
*
* Thus, the behavior does not resize the mark directly, but instead updates the
* size by updating the assigned panel's underlying data. Note that if the
* positional properties are defined with bottom and right (rather than top and
* left), the resize behavior will be inverted, which will confuse users!
*
* <p>The resize behavior is bounded by the assigned mark's enclosing panel; the
* positional attributes are clamped such that the selection does not extend
* outside the panel's bounds.
*
* <p>The mark being resized is automatically re-rendered for each mouse event
* as part of the resize operation. This behavior may be enhanced in the future
* to allow more flexible configuration. In some cases, such as with parallel
* coordinates, resizing the selection may cause related marks to change, in
* which case additional marks may also need to be rendered. This can be
* accomplished by listening for the select psuedo-events:<ul>
*
* <li>resizestart (on mousedown)
* <li>resize (on mousemove)
* <li>resizeend (on mouseup)
*
* </ul>For example, to render the parent panel while resizing, thus
* re-rendering all sibling marks:
*
* <pre> .event("mousedown", pv.Behavior.resize("left"))
* .event("resize", function() this.parent)</pre>
*
* This behavior may be enhanced in the future to allow more flexible
* configuration of the selection behavior.
*
* @extends pv.Behavior
* @see pv.Behavior.select
* @see pv.Behavior.drag
*/
pv.Behavior.resize = function(side) {
var scene, // scene context
index, // scene context
r, // region being selected
m1; // initial mouse position
/** @private */
function mousedown(d) {
index = this.index;
scene = this.scene;
m1 = this.mouse();
r = d;
switch (side) {
case "left": m1.x = r.x + r.dx; break;
case "right": m1.x = r.x; break;
case "top": m1.y = r.y + r.dy; break;
case "bottom": m1.y = r.y; break;
}
pv.Mark.dispatch("resizestart", scene, index);
}
/** @private */
function mousemove() {
if (!scene) return;
scene.mark.context(scene, index, function() {
var m2 = this.mouse();
r.x = Math.max(0, Math.min(m1.x, m2.x));
r.y = Math.max(0, Math.min(m1.y, m2.y));
r.dx = Math.min(this.parent.width(), Math.max(m2.x, m1.x)) - r.x;
r.dy = Math.min(this.parent.height(), Math.max(m2.y, m1.y)) - r.y;
this.render();
});
pv.Mark.dispatch("resize", scene, index);
}
/** @private */
function mouseup() {
if (!scene) return;
pv.Mark.dispatch("resizeend", scene, index);
scene = null;
}
pv.listen(window, "mousemove", mousemove);
pv.listen(window, "mouseup", mouseup);
return mousedown;
};
/**
* Returns a new pan behavior to be registered on mousedown events.
*
* @class Implements interactive panning starting with mousedown events.
* Register this behavior on panels to allow panning. This behavior can be used
* in tandem with {@link pv.Behavior.zoom} to allow both panning and zooming:
*
* <pre> .event("mousedown", pv.Behavior.pan())
* .event("mousewheel", pv.Behavior.zoom())</pre>
*
* The pan behavior currently supports only mouse events; support for keyboard
* shortcuts to improve accessibility may be added in the future.
*
* <p>After the initial mousedown event is triggered, this behavior listens for
* mousemove and mouseup events on the window. This allows panning to continue
* even if the mouse temporarily leaves the panel that is being panned, or even
* the root panel.
*
* <p>The implementation of this behavior relies on the panel's
* <tt>transform</tt> property, which specifies a matrix transformation that is
* applied to child marks. Note that the transform property only affects the
* panel's children, but not the panel itself; therefore the panel's fill and
* stroke will not change when the contents are panned.
*
* <p>Panels have transparent fill styles by default; this means that panels may
* not receive the initial mousedown event to start panning. To fix this
* problem, either given the panel a visible fill style (such as "white"), or
* set the <tt>events</tt> property to "all" such that the panel receives events
* despite its transparent fill.
*
* <p>The pan behavior has optional support for bounding. If enabled, the user
* will not be able to pan the panel outside of the initial bounds. This feature
* is designed to work in conjunction with the zoom behavior; otherwise,
* bounding the panel effectively disables all panning.
*
* @extends pv.Behavior
* @see pv.Behavior.zoom
* @see pv.Panel#transform
*/
pv.Behavior.pan = function() {
var scene, // scene context
index, // scene context
m1, // transformation matrix at the start of panning
v1, // mouse location at the start of panning
k, // inverse scale
bound; // whether to bound to the panel
/** @private */
function mousedown() {
index = this.index;
scene = this.scene;
v1 = pv.vector(pv.event.pageX, pv.event.pageY);
m1 = this.transform();
k = 1 / (m1.k * this.scale);
if (bound) {
bound = {
x: (1 - m1.k) * this.width(),
y: (1 - m1.k) * this.height()
};
}
}
/** @private */
function mousemove() {
if (!scene) return;
scene.mark.context(scene, index, function() {
var x = (pv.event.pageX - v1.x) * k,
y = (pv.event.pageY - v1.y) * k,
m = m1.translate(x, y);
if (bound) {
m.x = Math.max(bound.x, Math.min(0, m.x));
m.y = Math.max(bound.y, Math.min(0, m.y));
}
this.transform(m).render();
});
pv.Mark.dispatch("pan", scene, index);
}
/** @private */
function mouseup() {
scene = null;
}
/**
* Sets or gets the bound parameter. If bounding is enabled, the user will not
* be able to pan outside the initial panel bounds; this typically applies
* only when the pan behavior is used in tandem with the zoom behavior.
* Bounding is not enabled by default.
*
* <p>Note: enabling bounding after panning has already occurred will not
* immediately reset the transform. Bounding should be enabled before the
* panning behavior is applied.
*
* @function
* @returns {pv.Behavior.pan} this, or the current bound parameter.
* @name pv.Behavior.pan.prototype.bound
* @param {boolean} [x] the new bound parameter.
*/
mousedown.bound = function(x) {
if (arguments.length) {
bound = Boolean(x);
return this;
}
return Boolean(bound);
};
pv.listen(window, "mousemove", mousemove);
pv.listen(window, "mouseup", mouseup);
return mousedown;
};
/**
* Returns a new zoom behavior to be registered on mousewheel events.
*
* @class Implements interactive zooming using mousewheel events. Register this
* behavior on panels to allow zooming. This behavior can be used in tandem with
* {@link pv.Behavior.pan} to allow both panning and zooming:
*
* <pre> .event("mousedown", pv.Behavior.pan())
* .event("mousewheel", pv.Behavior.zoom())</pre>
*
* The zoom behavior currently supports only mousewheel events; support for
* keyboard shortcuts and gesture events to improve accessibility may be added
* in the future.
*
* <p>The implementation of this behavior relies on the panel's
* <tt>transform</tt> property, which specifies a matrix transformation that is
* applied to child marks. Note that the transform property only affects the
* panel's children, but not the panel itself; therefore the panel's fill and
* stroke will not change when the contents are zoomed. The built-in support for
* transforms only supports uniform scaling and translates, which is sufficient
* for panning and zooming. Note that this is not a strict geometric
* transformation, as the <tt>lineWidth</tt> property is scale-aware: strokes
* are drawn at constant size independent of scale.
*
* <p>Panels have transparent fill styles by default; this means that panels may
* not receive mousewheel events to zoom. To fix this problem, either given the
* panel a visible fill style (such as "white"), or set the <tt>events</tt>
* property to "all" such that the panel receives events despite its transparent
* fill.
*
* <p>The zoom behavior has optional support for bounding. If enabled, the user
* will not be able to zoom out farther than the initial bounds. This feature is
* designed to work in conjunction with the pan behavior.
*
* @extends pv.Behavior
* @see pv.Panel#transform
* @see pv.Mark#scale
* @param {number} speed
*/
pv.Behavior.zoom = function(speed) {
var bound; // whether to bound to the panel
if (!arguments.length) speed = 1 / 48;
/** @private */
function mousewheel() {
var v = this.mouse(),
k = pv.event.wheel * speed,
m = this.transform().translate(v.x, v.y)
.scale((k < 0) ? (1e3 / (1e3 - k)) : ((1e3 + k) / 1e3))
.translate(-v.x, -v.y);
if (bound) {
m.k = Math.max(1, m.k);
m.x = Math.max((1 - m.k) * this.width(), Math.min(0, m.x));
m.y = Math.max((1 - m.k) * this.height(), Math.min(0, m.y));
}
this.transform(m).render();
pv.Mark.dispatch("zoom", this.scene, this.index);
}
/**
* Sets or gets the bound parameter. If bounding is enabled, the user will not
* be able to zoom out farther than the initial panel bounds. Bounding is not
* enabled by default. If this behavior is used in tandem with the pan
* behavior, both should use the same bound parameter.
*
* <p>Note: enabling bounding after zooming has already occurred will not
* immediately reset the transform. Bounding should be enabled before the zoom
* behavior is applied.
*
* @function
* @returns {pv.Behavior.zoom} this, or the current bound parameter.
* @name pv.Behavior.zoom.prototype.bound
* @param {boolean} [x] the new bound parameter.
*/
mousewheel.bound = function(x) {
if (arguments.length) {
bound = Boolean(x);
return this;
}
return Boolean(bound);
};
return mousewheel;
};
/**
* @ignore
* @namespace
*/
pv.Geo = function() {};
/**
* Abstract; not implemented. There is no explicit constructor; this class
* merely serves to document the representation used by {@link pv.Geo.scale}.
*
* @class Represents a pair of geographic coordinates.
*
* @name pv.Geo.LatLng
* @see pv.Geo.scale
*/
/**
* The <i>latitude</i> coordinate in degrees; positive is North.
*
* @type number
* @name pv.Geo.LatLng.prototype.lat
*/
/**
* The <i>longitude</i> coordinate in degrees; positive is East.
*
* @type number
* @name pv.Geo.LatLng.prototype.lng
*/
/**
* Abstract; not implemented. There is no explicit constructor; this class
* merely serves to document the representation used by {@link pv.Geo.scale}.
*
* @class Represents a geographic projection. This class provides the core
* implementation for {@link pv.Geo.scale}s, mapping between geographic
* coordinates (latitude and longitude) and normalized screen space in the range
* [-1,1]. The remaining mapping between normalized screen space and actual
* pixels is performed by <tt>pv.Geo.scale</tt>.
*
* <p>Many geographic projections have a point around which the projection is
* centered. Rather than have each implementation add support for a
* user-specified center point, the <tt>pv.Geo.scale</tt> translates the
* geographic coordinates relative to the center point for both the forward and
* inverse projection.
*
* <p>In general, this class should not be used directly, unless the desire is
* to implement a new geographic projection. Instead, use <tt>pv.Geo.scale</tt>.
* Implementations are not required to implement inverse projections, but are
* needed for some forms of interactivity. Also note that some inverse
* projections are ambiguous, such as the connecting points in Dymaxian maps.
*
* @name pv.Geo.Projection
* @see pv.Geo.scale
*/
/**
* The <i>forward</i> projection.
*
* @function
* @name pv.Geo.Projection.prototype.project
* @param {pv.Geo.LatLng} latlng the latitude and longitude to project.
* @returns {pv.Vector} the xy-coordinates of the given point.
*/
/**
* The <i>inverse</i> projection; optional.
*
* @function
* @name pv.Geo.Projection.prototype.invert
* @param {pv.Vector} xy the x- and y-coordinates to invert.
* @returns {pv.Geo.LatLng} the latitude and longitude of the given point.
*/
/**
* The built-in projections.
*
* @see pv.Geo.Projection
* @namespace
*/
pv.Geo.projections = {
/** @see http://en.wikipedia.org/wiki/Mercator_projection */
mercator: {
project: function(latlng) {
return {
x: latlng.lng / 180,
y: latlng.lat > 85 ? 1 : latlng.lat < -85 ? -1
: Math.log(Math.tan(Math.PI / 4
+ pv.radians(latlng.lat) / 2)) / Math.PI
};
},
invert: function(xy) {
return {
lng: xy.x * 180,
lat: pv.degrees(2 * Math.atan(Math.exp(xy.y * Math.PI)) - Math.PI / 2)
};
}
},
/** @see http://en.wikipedia.org/wiki/Gall-Peters_projection */
"gall-peters": {
project: function(latlng) {
return {
x: latlng.lng / 180,
y: Math.sin(pv.radians(latlng.lat))
};
},
invert: function(xy) {
return {
lng: xy.x * 180,
lat: pv.degrees(Math.asin(xy.y))
};
}
},
/** @see http://en.wikipedia.org/wiki/Sinusoidal_projection */
sinusoidal: {
project: function(latlng) {
return {
x: pv.radians(latlng.lng) * Math.cos(pv.radians(latlng.lat)) / Math.PI,
y: latlng.lat / 90
};
},
invert: function(xy) {
return {
lng: pv.degrees((xy.x * Math.PI) / Math.cos(xy.y * Math.PI / 2)),
lat: xy.y * 90
};
}
},
/** @see http://en.wikipedia.org/wiki/Aitoff_projection */
aitoff: {
project: function(latlng) {
var l = pv.radians(latlng.lng),
f = pv.radians(latlng.lat),
a = Math.acos(Math.cos(f) * Math.cos(l / 2));
return {
x: 2 * (a ? (Math.cos(f) * Math.sin(l / 2) * a / Math.sin(a)) : 0) / Math.PI,
y: 2 * (a ? (Math.sin(f) * a / Math.sin(a)) : 0) / Math.PI
};
},
invert: function(xy) {
var x = xy.x * Math.PI / 2,
y = xy.y * Math.PI / 2;
return {
lng: pv.degrees(x / Math.cos(y)),
lat: pv.degrees(y)
};
}
},
/** @see http://en.wikipedia.org/wiki/Hammer_projection */
hammer: {
project: function(latlng) {
var l = pv.radians(latlng.lng),
f = pv.radians(latlng.lat),
c = Math.sqrt(1 + Math.cos(f) * Math.cos(l / 2));
return {
x: 2 * Math.SQRT2 * Math.cos(f) * Math.sin(l / 2) / c / 3,
y: Math.SQRT2 * Math.sin(f) / c / 1.5
};
},
invert: function(xy) {
var x = xy.x * 3,
y = xy.y * 1.5,
z = Math.sqrt(1 - x * x / 16 - y * y / 4);
return {
lng: pv.degrees(2 * Math.atan2(z * x, 2 * (2 * z * z - 1))),
lat: pv.degrees(Math.asin(z * y))
};
}
},
/** The identity or "none" projection. */
identity: {
project: function(latlng) {
return {
x: latlng.lng / 180,
y: latlng.lat / 90
};
},
invert: function(xy) {
return {
lng: xy.x * 180,
lat: xy.y * 90
};
}
}
};
/**
* Returns a geographic scale. The arguments to this constructor are optional,
* and equivalent to calling {@link #projection}.
*
* @class Represents a geographic scale; a mapping between latitude-longitude
* coordinates and screen pixel coordinates. By default, the domain is inferred
* from the geographic coordinates, so that the domain fills the output range.
*
* <p>Note that geographic scales are two-dimensional transformations, rather
* than the one-dimensional bidrectional mapping typical of other scales.
* Rather than mapping (for example) between a numeric domain and a numeric
* range, geographic scales map between two coordinate objects: {@link
* pv.Geo.LatLng} and {@link pv.Vector}.
*
* @param {pv.Geo.Projection} [p] optional projection.
* @see pv.Geo.scale#ticks
*/
pv.Geo.scale = function(p) {
var rmin = {x: 0, y: 0}, // default range minimum
rmax = {x: 1, y: 1}, // default range maximum
d = [], // default domain
j = pv.Geo.projections.identity, // domain <-> normalized range
x = pv.Scale.linear(-1, 1).range(0, 1), // normalized <-> range
y = pv.Scale.linear(-1, 1).range(1, 0), // normalized <-> range
c = {lng: 0, lat: 0}, // Center Point
lastLatLng, // cached latlng
lastPoint; // cached point
/** @private */
function scale(latlng) {
if (!lastLatLng
|| (latlng.lng != lastLatLng.lng)
|| (latlng.lat != lastLatLng.lat)) {
lastLatLng = latlng;
var p = project(latlng);
lastPoint = {x: x(p.x), y: y(p.y)};
}
return lastPoint;
}
/** @private */
function project(latlng) {
var offset = {lng: latlng.lng - c.lng, lat: latlng.lat};
return j.project(offset);
}
/** @private */
function invert(xy) {
var latlng = j.invert(xy);
latlng.lng += c.lng;
return latlng;
}
/** Returns the projected x-coordinate. */
scale.x = function(latlng) {
return scale(latlng).x;
};
/** Returns the projected y-coordinate. */
scale.y = function(latlng) {
return scale(latlng).y;
};
/**
* Abstract; this is a local namespace on a given geographic scale.
*
* @namespace Tick functions for geographic scales. Because geographic scales
* represent two-dimensional transformations (as opposed to one-dimensional
* transformations typical of other scales), the tick values are similarly
* represented as two-dimensional coordinates in the input domain, i.e.,
* {@link pv.Geo.LatLng} objects.
*
* <p>Also, note that non-rectilinear projections, such as sinsuoidal and
* aitoff, may not produce straight lines for constant longitude or constant
* latitude. Therefore the returned array of ticks is a two-dimensional array,
* sampling various latitudes as constant longitude, and vice versa.
*
* <p>The tick lines can therefore be approximated as polylines, either with
* "linear" or "cardinal" interpolation. This is not as accurate as drawing
* the true curve through the projection space, but is usually sufficient.
*
* @name pv.Geo.scale.prototype.ticks
* @see pv.Geo.scale
* @see pv.Geo.LatLng
* @see pv.Line#interpolate
*/
scale.ticks = {
/**
* Returns longitude ticks.
*
* @function
* @param {number} [m] the desired number of ticks.
* @returns {array} a nested array of <tt>pv.Geo.LatLng</tt> ticks.
* @name pv.Geo.scale.prototype.ticks.prototype.lng
*/
lng: function(m) {
var lat, lng;
if (d.length > 1) {
var s = pv.Scale.linear();
if (m == undefined) m = 10;
lat = s.domain(d, function(d) { return d.lat; }).ticks(m);
lng = s.domain(d, function(d) { return d.lng; }).ticks(m);
} else {
lat = pv.range(-80, 81, 10);
lng = pv.range(-180, 181, 10);
}
return lng.map(function(lng) {
return lat.map(function(lat) {
return {lat: lat, lng: lng};
});
});
},
/**
* Returns latitude ticks.
*
* @function
* @param {number} [m] the desired number of ticks.
* @returns {array} a nested array of <tt>pv.Geo.LatLng</tt> ticks.
* @name pv.Geo.scale.prototype.ticks.prototype.lat
*/
lat: function(m) {
return pv.transpose(scale.ticks.lng(m));
}
};
/**
* Inverts the specified value in the output range, returning the
* corresponding value in the input domain. This is frequently used to convert
* the mouse location (see {@link pv.Mark#mouse}) to a value in the input
* domain. Inversion is only supported for numeric ranges, and not colors.
*
* <p>Note that this method does not do any rounding or bounds checking. If
* the input domain is discrete (e.g., an array index), the returned value
* should be rounded. If the specified <tt>y</tt> value is outside the range,
* the returned value may be equivalently outside the input domain.
*
* @function
* @name pv.Geo.scale.prototype.invert
* @param {number} y a value in the output range (a pixel location).
* @returns {number} a value in the input domain.
*/
scale.invert = function(p) {
return invert({x: x.invert(p.x), y: y.invert(p.y)});
};
/**
* Sets or gets the input domain. Note that unlike quantitative scales, the
* domain cannot be reduced to a simple rectangle (i.e., minimum and maximum
* values for latitude and longitude). Instead, the domain values must be
* projected to normalized space, effectively finding the domain in normalized
* space rather than in terms of latitude and longitude. Thus, changing the
* projection requires recomputing the normalized domain.
*
* <p>This method can be invoked several ways:
*
* <p>1. <tt>domain(values...)</tt>
*
* <p>Specifying the domain as a series of {@link pv.Geo.LatLng}s is the most
* explicit and recommended approach. However, if the domain values are
* derived from data, you may find the second method more appropriate.
*
* <p>2. <tt>domain(array, f)</tt>
*
* <p>Rather than enumerating the domain explicitly, you can specify a single
* argument of an array. In addition, you can specify an optional accessor
* function to extract the domain values (as {@link pv.Geo.LatLng}s) from the
* array. If the specified array has fewer than two elements, this scale will
* default to the full normalized domain.
*
* <p>2. <tt>domain()</tt>
*
* <p>Invoking the <tt>domain</tt> method with no arguments returns the
* current domain as an array.
*
* @function
* @name pv.Geo.scale.prototype.domain
* @param {...} domain... domain values.
* @returns {pv.Geo.scale} <tt>this</tt>, or the current domain.
*/
scale.domain = function(array, f) {
if (arguments.length) {
d = (array instanceof Array)
? ((arguments.length > 1) ? pv.map(array, f) : array)
: Array.prototype.slice.call(arguments);
if (d.length > 1) {
var lngs = d.map(function(c) { return c.lng; });
var lats = d.map(function(c) { return c.lat; });
c = {
lng: (pv.max(lngs) + pv.min(lngs)) / 2,
lat: (pv.max(lats) + pv.min(lats)) / 2
};
var n = d.map(project); // normalized domain
x.domain(n, function(p) { return p.x; });
y.domain(n, function(p) { return p.y; });
} else {
c = {lng: 0, lat: 0};
x.domain(-1, 1);
y.domain(-1, 1);
}
lastLatLng = null; // invalidate the cache
return this;
}
return d;
};
/**
* Sets or gets the output range. This method can be invoked several ways:
*
* <p>1. <tt>range(min, max)</tt>
*
* <p>If two objects are specified, the arguments should be {@link pv.Vector}s
* which specify the minimum and maximum values of the x- and y-coordinates
* explicitly.
*
* <p>2. <tt>range(width, height)</tt>
*
* <p>If two numbers are specified, the arguments specify the maximum values
* of the x- and y-coordinates explicitly; the minimum values are implicitly
* zero.
*
* <p>3. <tt>range()</tt>
*
* <p>Invoking the <tt>range</tt> method with no arguments returns the current
* range as an array of two {@link pv.Vector}s: the minimum (top-left) and
* maximum (bottom-right) values.
*
* @function
* @name pv.Geo.scale.prototype.range
* @param {...} range... range values.
* @returns {pv.Geo.scale} <tt>this</tt>, or the current range.
*/
scale.range = function(min, max) {
if (arguments.length) {
if (typeof min == "object") {
rmin = {x: Number(min.x), y: Number(min.y)};
rmax = {x: Number(max.x), y: Number(max.y)};
} else {
rmin = {x: 0, y: 0};
rmax = {x: Number(min), y: Number(max)};
}
x.range(rmin.x, rmax.x);
y.range(rmax.y, rmin.y); // XXX flipped?
lastLatLng = null; // invalidate the cache
return this;
}
return [rmin, rmax];
};
/**
* Sets or gets the projection. This method can be invoked several ways:
*
* <p>1. <tt>projection(string)</tt>
*
* <p>Specifying a string sets the projection to the given named projection in
* {@link pv.Geo.projections}. If no such projection is found, the identity
* projection is used.
*
* <p>2. <tt>projection(object)</tt>
*
* <p>Specifying an object sets the projection to the given custom projection,
* which must implement the <i>forward</i> and <i>inverse</i> methods per the
* {@link pv.Geo.Projection} interface.
*
* <p>3. <tt>projection()</tt>
*
* <p>Invoking the <tt>projection</tt> method with no arguments returns the
* current object that defined the projection.
*
* @function
* @name pv.Scale.geo.prototype.projection
* @param {...} range... range values.
* @returns {pv.Scale.geo} <tt>this</tt>, or the current range.
*/
scale.projection = function(p) {
if (arguments.length) {
j = typeof p == "string"
? pv.Geo.projections[p] || pv.Geo.projections.identity
: p;
return this.domain(d); // recompute normalized domain
}
return p;
};
/**
* Returns a view of this scale by the specified accessor function <tt>f</tt>.
* Given a scale <tt>g</tt>, <tt>g.by(function(d) d.foo)</tt> is equivalent to
* <tt>function(d) g(d.foo)</tt>. This method should be used judiciously; it
* is typically more clear to invoke the scale directly, passing in the value
* to be scaled.
*
* @function
* @name pv.Geo.scale.prototype.by
* @param {function} f an accessor function.
* @returns {pv.Geo.scale} a view of this scale by the specified accessor
* function.
*/
scale.by = function(f) {
function by() { return scale(f.apply(this, arguments)); }
for (var method in scale) by[method] = scale[method];
return by;
};
if (arguments.length) scale.projection(p);
return scale;
};
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment