Skip to content

Instantly share code, notes, and snippets.

@nagakedari
Created May 8, 2023 05:52
mlflow gcp experimentation
import os
os.environ['GOOGLE_APPLICATION_CREDENTIALS']='<<path_to_service_account_json'
# set tracking uri to mlflow server running on cloud
mlflow.set_tracking_uri('https://mlflowtracker-gcp-XXXXXX-uc.a.run.app')
mlflow.set_experiment('term_deposit')
with mlflow.start_run():
params = {
"n_estimator": 120,
"learning_rate": 0.3
}
#log experiment parameters
mlflow.log_param(key='model_params',value=params)
model = GradientBoostingClassifier(n_estimators=120, learning_rate=0.3, random_state=7)
model.fit(X_train, y_train)
# Get predictions
y_predict = model.predict(X_test)
metrics = {
'precision_score': precision_score(y_true=y_test, y_pred=y_predict),
'recall_score': recall_score(y_true=y_test, y_pred=y_predict),
'f1_score': f1_score(y_true=y_test, y_pred=y_predict),
'accuracy_score': accuracy_score(y_true=y_test, y_pred=y_predict)
}
#log model metrics
mlflow.log_metrics(metrics)
# Save model
mlflow.sklearn.log_model(model, 'term_deposit')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment