python2.7,opencvで顔認識
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
from os import path | |
import numpy as np | |
from matplotlib import pyplot as plt | |
%matplotlib inline | |
cascades_dir = path.normpath(path.join(cv2.__file__, '..', '..', '..', '..', 'share', 'OpenCV', 'haarcascades')) | |
cascade_f = cv2.CascadeClassifier(path.join(cascades_dir, 'haarcascade_frontalface_alt2.xml')) | |
def faceDetect(filePath): | |
img = cv2.imread(filePath) | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
faces = cascade_f.detectMultiScale(img, 1.3, 5) | |
if len(faces) > 0: | |
cnt = 1 | |
for(x, y, w, h) in faces: | |
# 顔を四角で囲む | |
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) | |
# 顔だけを表示 | |
cut_face_img = img[y:y+h,x:x+w] | |
# 横一列に顔を表示 | |
plt.subplot(1, len(faces), cnt) | |
plt.imshow(cv2.cvtColor(cut_face_img, cv2.COLOR_BGR2RGB)) | |
cnt += 1 | |
plt.show() | |
else: | |
print 'no face' | |
faceDetect('images/mai001.jpg') | |
def getCroppedFace(filePath): | |
img = cv2.imread(filePath) | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
faces = cascade_f.detectMultiScale(img, 1.3, 5) | |
cropped_size = 100 | |
if len(faces) > 0: | |
for(x, y, w, h) in faces: | |
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) | |
cut_face_img = img[y:y+h,x:x+w] | |
return cut_face_img | |
else: | |
print 'no face' | |
return false | |
def getResizedImage(img): | |
cropped_size = 100 | |
resized_img = cv2.resize(img, (cropped_size, cropped_size)) | |
return resized_img | |
croppedFace = getCroppedFace('images/mai001.jpg') | |
# croppedFace = getResizedImage(croppedFace) | |
plt.imshow(cv2.cvtColor(croppedFace, cv2.COLOR_BGR2RGB)) | |
plt.show() | |
def getRotateImage(img, angle): | |
original_width, original_height = img.shape[:2] | |
size = original_width | |
matrix = cv2.getRotationMatrix2D((size / 2, size / 2), angle, 1.0) | |
rotated_img = cv2.warpAffine(img, matrix, (size, size)) | |
return rotated_img | |
for delta_angle in range(-150, 150, 50): | |
rotated_img = getRotateImage(croppedFace, delta_angle) | |
plt.imshow(cv2.cvtColor(rotated_img, cv2.COLOR_BGR2RGB)) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment