-
-
Save nateanl/d7ca175f9c6c31251e2b4aabcc95cc3c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
The MIT License (MIT) | |
Copyright (c) Microsoft Corporation | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
import math | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn, Tensor | |
class WavLMSelfAttention(nn.Module): | |
"""Multi-headed self-attention for WavLM model :cite:`chen2022wavlm`. | |
Wraps around ``torch.nn.MultiheadAttention``, creating relaive position embeddings and passing them to multi-headed | |
attention as a mask. | |
Source: https://github.com/microsoft/unilm/blob/2d8302f09c99bca2b82e6e868d81d4281cceebc8/wavlm/modules.py#L303-L763 | |
Args: | |
embed_dim (int): Total dimension of the model. | |
num_heads (int): The number of heads. | |
dropout (float, optional): Dropout probability on attn_output_weights. (Default: to ``0.0``) | |
bias (bool, optional): If ``True``, add bias to input / output projection layers. (Default: ``True``) | |
has_relative_attention_bias (bool, optional): If ``True``, apply relative position embedding. | |
Necessary in the first encoder layer, but not in the subsequent ones. (Default: ``False``) | |
num_buckets (int, optional): Number of buckets for relative position embedding. (Default: ``32``) | |
max_distance (int, optional): Naximum distance for relative position embedding. (Default: ``128``) | |
gru_rel_pos (bool, optional): If ``True``, apply gated relative position embedding. (Default: ``False``) | |
""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
bias: bool = True, | |
has_relative_attention_bias: bool = False, | |
num_buckets: int = 32, | |
max_distance: int = 128, | |
gru_rel_pos: bool = True, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
if has_relative_attention_bias: | |
self.rel_attn_embed = nn.Embedding(num_buckets, num_heads) | |
else: | |
self.rel_attn_embed = None | |
self.head_dim = embed_dim // num_heads | |
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout, bias=bias, batch_first=True) | |
self.gru_rel_pos = gru_rel_pos | |
if self.gru_rel_pos: | |
self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8) | |
self.gru_rel_pos_const = nn.Parameter(torch.ones(1, num_heads, 1, 1)) | |
self.has_position_bias = True | |
def compute_bias(self, query_length: int, key_length: int) -> Tensor: | |
"""Compute relative position embeddings for WavLM model. | |
Args: | |
query_length (int): Query position can take values between 0 and ``query_length - 1``. | |
key_length (int): Key position can take values between 0 and ``key_length - 1``. | |
Returns: | |
Tensor of shape `(num_heads, query_length, key_length)`, relative positions embeddings | |
""" | |
context_position = torch.arange(query_length, dtype=torch.long)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long)[None, :] | |
relative_position = memory_position - context_position # Shape (query_length, key_length) | |
relative_position_bucket = self._relative_positions_bucket(relative_position, bidirectional=True) | |
relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device) | |
values = self.rel_attn_embed(relative_position_bucket) # Shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]) | |
return values | |
def _relative_positions_bucket(self, relative_positions: Tensor, bidirectional: bool = True): | |
"""Compute relative position buckets for WavLM model. Computation similar to formula (5) in WavLM | |
paper :cite:`chen2022wavlm`. | |
Args: | |
relative_positions (Tensor): Relative offsets between query and key positions, | |
of shape ``(query_length, key_length)``. | |
bidirectional (bool): If ``True``, values will be filled both above and below the diagonal in the resulting | |
matrix. If ``False``, the elements above the diagonal (i.e. with negative relative offsets) will be set | |
to zero. (Default ``True``) | |
Returns: | |
Tensor of shape ``(query_length, key_length)`` filled bucketed values of with relative positions. | |
""" | |
num_buckets = self.num_buckets | |
max_distance = self.max_distance | |
# Shape (query_length, key_length) | |
relative_buckets = torch.zeros_like(relative_positions, dtype=torch.long) | |
if bidirectional: | |
num_buckets = num_buckets // 2 | |
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets | |
relative_positions = torch.abs(relative_positions) | |
else: | |
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions)) | |
max_exact = num_buckets // 2 | |
is_small = relative_positions < max_exact | |
relative_postion_if_large = max_exact + ( | |
torch.log(relative_positions.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_postion_if_large = torch.min( | |
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large) | |
return relative_buckets | |
def forward( | |
self, | |
query: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
attention_mask: Optional[Tensor] = None, | |
position_bias: Optional[Tensor] = None, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
""" | |
Args: | |
query (Tensor): Input of shape ``(batch_size, src_len, embed_dim)``. | |
key_padding_mask (Tensor or None, optional): Mask to exclude keys that are pads, of shape | |
`(batch, src_len)`, where padding elements are indicated by 1s. (Default: ``None``) | |
attn_mask: Needs to be ``None``. The argument exists for compatibility with | |
``EncoderLayer``. (Default: ``None``) | |
position_bias (Tensor or None, optional): Position bias of shape | |
``(batch_size * num_heads, src_len, src_len)``. When used inside WavLM model encoder, will be | |
generated in the first layer and then passed from each encoder layer to the next one. | |
(Default: ``None``) | |
Returns: | |
attn_output (Tensor): Attention output of shape ``(batch_size, src_len, embed_dim)``. | |
position_bias (Tensor or None): Position bias of shape ``(batch_size * num_heads, src_len, src_len)``. | |
""" | |
bsz, seq_len, embed_dim = query.size() | |
assert embed_dim == self.embed_dim | |
assert attention_mask is None | |
if self.rel_attn_embed is not None and position_bias is None: | |
position_bias = self.compute_bias(seq_len, seq_len) | |
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, seq_len, seq_len) | |
attn_mask_rel_pos: Optional[Tensor] = None | |
if position_bias is not None: | |
attn_mask_rel_pos = position_bias | |
if self.gru_rel_pos: # Apply gating on relative position bias | |
query_layer = query.view(bsz, seq_len, self.num_heads, -1) | |
query_layer = query_layer.permute(0, 2, 1, 3) | |
gate_a, gate_b = torch.sigmoid( | |
self.gru_rel_pos_linear(query_layer).view(bsz, self.num_heads, seq_len, 2, 4).sum(-1, keepdim=False) | |
).chunk(2, dim=-1) | |
gate_a_1 = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0 | |
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias | |
attn_mask_rel_pos = attn_mask_rel_pos.view((-1, seq_len, seq_len)) | |
attn_output, _ = self.attention( | |
query, query, query, key_padding_mask=key_padding_mask, attn_mask=attn_mask_rel_pos, need_weights=False | |
) | |
return attn_output, position_bias | |
class ScaledDotProductAttention(WavLMSelfAttention): | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
bias: bool = True, | |
has_relative_attention_bias: bool = False, | |
num_buckets: int = 32, | |
max_distance: int = 128, | |
gru_rel_pos: bool = True, | |
): | |
super().__init__( | |
embed_dim, num_heads, dropout, bias, has_relative_attention_bias, num_buckets, max_distance, gru_rel_pos | |
) | |
self.dropout = dropout | |
def forward( | |
self, | |
query: Tensor, | |
key_padding_mask: Optional[Tensor] = None, | |
attention_mask: Optional[Tensor] = None, | |
position_bias: Optional[Tensor] = None, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
""" | |
Args: | |
query (Tensor): Input of shape ``(batch_size, src_len, embed_dim)``. | |
key_padding_mask (Tensor or None, optional): Mask to exclude keys that are pads, of shape | |
`(batch, src_len)`, where padding elements are indicated by 1s. (Default: ``None``) | |
attn_mask: Needs to be ``None``. The argument exists for compatibility with | |
``EncoderLayer``. (Default: ``None``) | |
position_bias (Tensor or None, optional): Position bias of shape | |
``(batch_size * num_heads, src_len, src_len)``. When used inside WavLM model encoder, will be | |
generated in the first layer and then passed from each encoder layer to the next one. | |
(Default: ``None``) | |
Returns: | |
attn_output (Tensor): Attention output of shape ``(batch_size, src_len, embed_dim)``. | |
position_bias (Tensor or None): Position bias of shape ``(batch_size * num_heads, src_len, src_len)``. | |
""" | |
bsz, seq_len, embed_dim = query.size() | |
assert embed_dim == self.embed_dim | |
assert attention_mask is None | |
if self.rel_attn_embed is not None and position_bias is None: | |
position_bias = self.compute_bias(seq_len, seq_len) | |
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1) | |
attn_mask_rel_pos: Optional[Tensor] = None | |
if position_bias is not None: | |
attn_mask_rel_pos = position_bias | |
if self.gru_rel_pos: # Apply gating on relative position bias | |
query_layer = query.view(bsz, seq_len, self.num_heads, -1) | |
query_layer = query_layer.permute(0, 2, 1, 3) | |
gate_a, gate_b = torch.sigmoid( | |
self.gru_rel_pos_linear(query_layer).view(bsz, self.num_heads, seq_len, 2, 4).sum(-1, keepdim=False) | |
).chunk(2, dim=-1) | |
gate_a_1 = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0 | |
attn_mask_rel_pos = gate_a_1.view(bsz, self.num_heads, -1, 1) * position_bias | |
attn_mask_rel_pos = attn_mask_rel_pos.view((bsz, self.num_heads, seq_len, seq_len)) | |
query_projected = torch.nn.functional.linear(query, self.attention.in_proj_weight, self.attention.in_proj_bias) | |
query, key, value = query_projected.chunk(3, -1) | |
shape = (bsz, seq_len, self.num_heads, self.head_dim) | |
query = query.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim) | |
key = key.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim) | |
value = value.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim) | |
dropout = self.dropout if self.training else 0.0 | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query, | |
key, | |
value, | |
attn_mask=attn_mask_rel_pos, | |
dropout_p=dropout, | |
is_causal=False, | |
) | |
attn_output = attn_output.transpose(1, 2).reshape(bsz, -1, self.num_heads * self.head_dim) | |
attn_output = self.attention.out_proj(attn_output) | |
return attn_output, position_bias | |
if __name__ == "__main__": | |
query = torch.rand(2, 100, 256) | |
for has_relative_attention_bias in [True, False]: | |
wavlm_attention = WavLMSelfAttention(256, 16, 0.0, has_relative_attention_bias=has_relative_attention_bias) | |
scaled_dot_product_attention = ScaledDotProductAttention( | |
256, 16, 0.0, has_relative_attention_bias=has_relative_attention_bias | |
) | |
scaled_dot_product_attention.load_state_dict(wavlm_attention.state_dict()) | |
out_wavlm, bias_wavlm = wavlm_attention(query) | |
out_scaled, bias_scaled = scaled_dot_product_attention(query) | |
assert torch.equal(out_wavlm, out_scaled) is True | |
if bias_wavlm is not None: | |
bias_scaled = bias_scaled.reshape(32, 100, 100) | |
assert torch.equal(bias_wavlm, bias_scaled) is True |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment