Last active
January 18, 2024 06:47
-
-
Save nathants/63aac8e36d5e8289c06637cd139c391e to your computer and use it in GitHub Desktop.
>> echo timestamp=2021-10-07T00:38:00Z a=160.2 b=20.8 c=1 | matplot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# type: ignore | |
# The MIT License (MIT) | |
# Copyright (c) 2022-present Nathan Todd-Stone | |
# https://en.wikipedia.org/wiki/MIT_License#License_terms | |
import matplotlib as mpl | |
from matplotlib import pyplot # pip install matplotlib | |
import argh # pip install argh | |
import pandas # pip install pandas | |
import PyQt5 # pip install pyqt5 | |
import sys | |
import datetime | |
import os | |
colors = { | |
"base03": "#002B36", | |
"base02": "#073642", | |
"base01": "#586e75", | |
"base00": "#657b83", | |
"base0": "#839496", | |
"base1": "#93a1a1", | |
"base2": "#EEE8D5", | |
"base3": "#FDF6E3", | |
"yellow": "#B58900", | |
"orange": "#CB4B16", | |
"red": "#DC322F", | |
"magenta": "#D33682", | |
"violet": "#6C71C4", | |
"blue": "#268BD2", | |
"cyan": "#2AA198", | |
"green": "#859900", | |
} | |
line_color = [ | |
colors[x] for x in [ | |
"base00", | |
"base3", | |
"yellow", | |
"red", | |
"violet", | |
"cyan", | |
"green", | |
] | |
] | |
line_style = [ | |
s | |
for s in [ | |
'-', | |
'--', | |
'-.', | |
':', | |
'.', | |
',', | |
'o', | |
'v', | |
'^', | |
'<', | |
'>', | |
'1', | |
'2', | |
'3', | |
'4', | |
's', | |
'p', | |
'*', | |
'h', | |
'H', | |
'+', | |
'x', | |
'D', | |
'd', | |
'|', | |
'_', | |
] | |
for _ in line_color | |
] | |
def solarized(): | |
params = {"ytick.color": colors["base0"], | |
"xtick.color": colors["base0"], | |
"text.color": colors["base0"], | |
"savefig.facecolor": colors["base03"], | |
"patch.facecolor": colors["blue"], | |
"patch.edgecolor": colors["base0"], | |
"grid.color": colors["base0"], | |
"figure.edgecolor": colors["base03"], | |
"figure.facecolor": colors["base02"], | |
"axes.edgecolor": colors["base0"], | |
"axes.facecolor": colors["base03"], | |
"axes.labelcolor": colors["base00"]} | |
mpl.rcParams.update(params) | |
def to_num(x): | |
try: | |
k, v = x.split('=') | |
except: | |
print("fatal:", x) | |
sys.exit(1) | |
if '.' in v and v.replace('.', '').replace('e+', '').replace('e-', '').replace('-', '').isdigit(): | |
return [k, float(v)] | |
elif v.replace('-', '').isdigit(): | |
return [k, int(v)] | |
else: | |
try: | |
return [k, datetime.datetime.strptime(v, "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=datetime.timezone.utc)] | |
except ValueError: | |
try: | |
return [k, datetime.datetime.strptime(v, "%Y-%m-%d").replace(tzinfo=datetime.timezone.utc)] | |
except ValueError: | |
return [k, v] | |
def main(name='', logy=False, *paths): | |
""" | |
visualize sparse timeseries data in an easily readable way. | |
usage: | |
>> echo ' | |
timestamp=2021-10-07T00:38:00Z a=160.2 b=20.8 c=1 | |
timestamp=2021-10-07T00:23:00Z a=263.9333333333333 b=17.066666666666666 c=2 | |
timestamp=2021-10-07T00:08:00Z a=360.4 c=4 | |
timestamp=2021-10-06T23:53:00Z a=462.2 b=18.8 c=8 | |
timestamp=2021-10-06T23:38:00Z a=562.1333333333333 b=18.866666666666667 c=16 | |
timestamp=2021-10-06T23:23:00Z b=26.333333333333332 c=32 | |
timestamp=2021-10-06T23:08:00Z a=356.2 b=24.8 c=64 | |
timestamp=2021-10-06T22:53:00Z a=460.1333333333333 b=20.866666666666667 c=128 | |
timestamp=2021-10-06T22:38:00Z a=564.1333333333333 c=256 | |
timestamp=2021-10-06T22:23:00Z a=659.5333333333333 b=21.466666666666665 c=512 | |
' | matplot | |
""" | |
solarized() | |
if paths: | |
streams = [(os.path.basename(path), open(path)) for path in paths] | |
else: | |
streams = [('stdin', sys.stdin)] | |
dfs = [] | |
columns = set() | |
for _, stream in streams: | |
xss = [] | |
for line in stream: | |
line = line.strip() | |
if not line: | |
continue | |
columns |= {x.split('=')[0] for x in line.split()} | |
xs = dict([to_num(x) for x in line.split()]) | |
xss.append(xs) | |
columns = sorted(columns) | |
columns = sorted(columns, key=lambda x: x != 'timestamp') | |
df = pandas.DataFrame(xss, columns=columns) | |
if len(df) and isinstance(df[columns[0]][0], pandas.Timestamp): | |
df = df.set_index(columns[0]) | |
dfs.append(df) | |
df = dfs[0] | |
for extra in dfs[1:]: | |
df = df.combine_first(extra) | |
df.plot(title=name, logy=logy, color=line_color, style=line_style) | |
pyplot.show() | |
if __name__ == '__main__': | |
argh.dispatch_command(main) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment