Skip to content

Instantly share code, notes, and snippets.

Created May 11, 2020 05:24
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
Save nbertagnolli/004862c45808fb4054e0fc3ca73acc7a to your computer and use it in GitHub Desktop.
A basic active learning example with marginal, uncertainty, and random sampling.
from typing import Dict, List
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline
def uncertainty_sampling(df: pd.DataFrame, preds: np.array, n: int) -> pd.DataFrame:
"""samples points for which we are least confident"""
df["preds"] = np.max(preds, axis=1)
return df.sort_values("preds").head(n).drop("preds", axis=1)
def random_sampling(df: pd.DataFrame, preds: np.array, n: int) -> pd.DataFrame:
return df.sample(n)
def margin_sampling(df: pd.DataFrame, preds: np.array, n: int) -> pd.DataFrame:
"""Samples points with greatest difference between most and second most probably classes"""
# Sort the predictions in increasing order
sorted_preds = np.sort(preds, axis=1)
# Subtract the second highest prediction from the highest prediction
# We need to check if the classifier has more than one class here.
if sorted_preds.shape[1] == 1:
return df.sample(n)
df["margin"] = sorted_preds[:, -1] - sorted_preds[:, -2]
return df.sort_values("margin").head(n).drop("margin", axis=1)
def combined_sampling(df: pd.DataFrame, preds: np.array, n: int, weights: List[float]=None) -> pd.DataFrame:
"""weighted sample with random, margin, and uncertainty"""
if weights is None:
weights = [.4, .4, .2]
margin_points = margin_sampling(df, preds, round(n * weights[0]))
uncertainty_points = uncertainty_sampling(df, preds, round(n * weights[1]))
# Resample the dataframe and preds to remove the sampled points
remaining_df = df.iloc[~(df.index.isin(margin_points.index) | df.index.isin(uncertainty_points.index))]
random_points = random_sampling(remaining_df, preds, round(n * weights[0]))
final_df = pd.concat([random_points, uncertainty_points, margin_points]).drop_duplicates().head(n)
return final_df
def evaluate_model_improvement(model,
train_df: pd.DataFrame,
test_df: pd.DataFrame,
n: int,
label_col: str,
data_col: str,
random_state: int=1234,
num_iterations: int=30
) -> List[Dict[str, Dict[str, float]]]:
train_data = train_df.sample(n, random_state=random_state)
scores = []
for i in range(1, num_iterations, 1):
# Clone the model to make sure we don't reuse model state
model = sklearn.base.clone(model)
# fit the model on our data[data_col], train_data[label_col])
# Get predictions for the current data level
preds = model.predict(test_df[data_col])
scores.append(classification_report(test_df[label_col], preds, output_dict=True))
# Get all points in training set that haven't been used
remaining_df = train_df.iloc[~train_df.index.isin(train_data.index)]
# Resample the data
new_samples = sample_func(remaining_df, model.predict_proba(remaining_df[data_col]), n)
train_data = pd.concat([train_data, new_samples])
return scores
# Load in the data
df = pd.read_csv("IMDB_Dataset.csv")
df["split"] = np.random.choice(["train", "test"], df.shape[0], [.7, .3])
x_train = df[df["split"] == "train"]
y_train = x_train["sentiment"]
x_test = df[df["split"] == "test"]
y_test = x_test["sentiment"]
# Sample each point
uncertainty_scores = evaluate_model_improvement(model, x_train, x_val, uncertainty_sampling, 5,
"sentiment", "review", rand_state, num_iterations=100)
random_scores = evaluate_model_improvement(model, x_train, x_val, random_sampling, 5,
"sentiment", "review", rand_state, num_iterations=100)
margin_scores = evaluate_model_improvement(model, x_train, x_val, margin_sampling, 5,
"sentiment", "review", rand_state, num_iterations=100)
combined_scores = evaluate_model_improvement(model, x_train, x_val, combined_sampling, 5,
"sentiment", "review", rand_state, num_iterations=100)
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
key = "positive"
x_points = np.cumsum([5] * 99)
plt.plot(x_points, np.array([x[key]["f1-score"] for x in uncertainty_scores]), label="uncertainty")
plt.plot(x_points, np.array([x[key]["f1-score"] for x in random_scores]), label="random")
plt.plot(x_points, np.array([x[key]["f1-score"] for x in margin_scores]), label="margin")
plt.plot(x_points, np.array([x[key]["f1-score"] for x in combined_scores]), label="combined")
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)
ax.set_title("Performance with Increasing Data", fontsize=25)
ax.set_xlabel("Number of Data Points", fontsize=15)
ax.set_ylabel("F1", fontsize=15)
Copy link

rlmariz commented Jun 12, 2023

This code not work.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment