Skip to content

Instantly share code, notes, and snippets.

View nikitakrutoy's full-sized avatar
👋

Nikita Krutoy nikitakrutoy

👋
  • Armenia, Yerevan
View GitHub Profile
@nikitakrutoy
nikitakrutoy / server.go
Created March 7, 2020 21:30
ReaderDispenserHandler
package main
import (
"fmt"
"io/ioutil"
"log"
"net/http"
"time"
)
package main
import (
"fmt"
"log"
"net/http"
)
const TOKEN = "TOKEN"
import graphviz as gv
path = ['Purchase order',
'Approved',
'RELEASED (5% delta possible)',
'Goods Reciept',
'Invoice Reciept (Logistics invoice) blocked',
'Invoice Reciept header updated',
'Invoice Reciept item updated',
'Invoice Reciept item updated',
OLS Regression Results
==============================================================================
Dep. Variable: price R-squared: 0.663
Model: OLS Adj. R-squared: 0.662
Method: Least Squares F-statistic: 1307.
Date: Thu, 24 May 2018 Prob (F-statistic): 0.00
Time: 01:15:33 Log-Likelihood: -18811.
No. Observations: 2000 AIC: 3.763e+04
Df Residuals: 1997 BIC: 3.764e+04
Df Model: 3
OLS Regression Results
==============================================================================
Dep. Variable: price R-squared: 0.668
Model: OLS Adj. R-squared: 0.667
Method: Least Squares F-statistic: 2078.
Date: Thu, 24 May 2018 Prob (F-statistic): 0.00
Time: 02:44:43 Log-Likelihood: -2.8798e+06
No. Observations: 319973 AIC: 5.760e+06
Df Residuals: 319663 BIC: 5.764e+06
Df Model: 309
*Тип продоцва*
* seller_privat -205444.22101121597
* seller_gewerblich -205673.3093386303
*Тип автомобиля*
vehicleType_cabrio -44260.151805165566
vehicleType_suv -44576.076239830596
vehicleType_coupe -45335.92636625235
vehicleType_bus -45359.941105251564
vehicleType_limousine -45458.52066895459
targets_path = "/Users/nikitakrutoy/playground/ml-practice-homework/hw5/data/svmlin/targets"
objects_path = "/Users/nikitakrutoy/playground/ml-practice-homework/hw5/data/svmlin/objects"
# svmlight data
train_path = "/Users/nikitakrutoy/playground/ml-practice-homework/hw5/data/svmlin/train"
with open(train_path, "r") as f:
objects_file = open(objects_path, "w")
targets_file = open(targets_path, "w")
while True:
using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
namespace Homework
{
class Pathway{
private char _begin;
private char _end;
reload(hw3code)
print("No cut")
bias, variance = hw3code.compute_bias_variance(DecisionTreeRegressor(), np.sin)
print("Bias %5f Variance %5f" % (bias, variance))
print()
reload(hw3code)
print("Depth 2")
bias, variance = hw3code.compute_bias_variance(DecisionTreeRegressor(max_depth=2), np.sin)
print("Bias %5f Variance %5f" % (bias, variance))
def compute_bias_variance(regressor, dependence_fun, x_generator=np.random.uniform, noise_generator=np.random.uniform,
sample_size=300, samples_num=300, objects_num=200, seed=1234):
"""
После генерации всех необходимых объектов, должна вызываться функция compute_bias_variance_fixed_samples.
Рекомендации:
* Создайте вектор объектов для оценивания интеграла по $x$, затем вектор зашумленных правильных ответов.
Оцените мат. ожидание шума с помощью генерации отдельной шумовой выборки длины objects_num.
* Проверить правильность реализации можно на примерах, которые разбирались на семинаре и в домашней работе.