Skip to content

Instantly share code, notes, and snippets.

View njtierney's full-sized avatar
🐝
Back at work

Nicholas Tierney njtierney

🐝
Back at work
View GitHub Profile
View using-distributional.md
# using distributional
options(tidyverse.quiet = TRUE)
library(tidyverse)
library(distributional)

dat_dist <- tibble(
  means = c(1:5),
  sds = c(5:1),
  vals = means + rnorm(5, 0.1, 0.1),
View pct-resupply.R
pct_resupply <- tibble::tribble(
~Section, ~Days, ~`Distance.(mi)`, ~`Total.(mi)`, ~Resupply,
"Campo to Mt. Laguna", 3L, 42.9, 42.9, "B",
"Mt. Laguna to Warner Springs", 4L, 66.6, 109.5, "B",
"Warner Springs to Idyllwild", 5L, 69.9, 179.4, "B",
"Idyllwild to Big Bear City", 6L, 95.6, 275, "B",
"Big Bear City to Wrightwood", 6L, 94.5, 369.5, "B",
"Wrightwood to Agua Dulce", 6L, 85, 454.5, "B",
"Agua Dulce to Tehachapi or Mojave", 6L, 112, 566.5, "B",
"Tehachapi to Kennedy Meadows", 8L, 135.5, 702.2, "M",
View example-case-when.R
clean_site_name_forbes <- function(site_name, out_name){
dplyr::case_when(
str_detect(site_name, "ST") ~ "STP Forbes",
str_detect(site_name, "Muddy") ~ "STP Forbes",
str_detect("ST", site_name) ~ "STP Forbes",
.default = "unmatched"
)
}
View reprex-multidsm.md
n.pixel <- 1000
n.other.spec <- 20
spec.names <- letters[1:(n.other.spec+1)]

## Geographic covariates affecting species abundance
x <- matrix(rnorm(2*n.pixel),nrow=n.pixel)

## Geographic covariate causing selection bias (correlated with x1)
z <- scale(x[,1] + rnorm(n.pixel)*sqrt(.95^(-2)-1))
View scrape-pct-blog.R
library(polite)
library(tidyverse)
library(httr2)
library(rvest)
url <- "https://njt.micro.blog/2023/08/19/pct-day-kennedy.html"
extract_pct_summary <- function(url){
raw <- bow(url) %>% scrape()
raw %>%
View demo-join.md
library(tidyverse)

# 4 data sets
# survey
n <- 100
create_survey <- function(n, year, id = 1:n){
  tibble(
  id = id,
  year = year,
View joins-demo-sim.R
library(tidyverse)
# 4 data sets
# survey
n <- 100
create_survey <- function(n, year, id = 1:n){
tibble(
id = id,
year = year,
province = sample(1:9, size = n, replace = TRUE),
View matches-and-things.md
library(tidyverse)
cause_for_dismissal <- c("A",
                         "B",
                         "C")

vic_moz_long <- tibble(
  id = 1:5,
  species = c("B", "C", "D", "E", "F")
)
View conmat-v-prem.md
# comparison of Prem vs conmat for germany:

library(deSolve)
library(tidyverse)
library(conmat)
world_data <- socialmixr::wpp_age() %>%
  mutate(
    new_lower_age = if_else(lower.age.limit >= 75, 75L, lower.age.limit)
  ) %>%
View distributions.md
library(distributional)
library(tidyverse)

dat <- tibble(
  id = 1:10,
  mean = c(1:10),
  sd = c(1:10)
) %>% 
  mutate(dist = dist_normal(