Looverage
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Projection matrix updates --- | |
set.seed(753) | |
prec <- .Machine$double.eps | |
N <- 54 # Simulate data | |
x <- as.matrix(c(rnorm(N), rnorm(3, 6, 0.25), rnorm(3, 8, 0.25))) | |
y <- c( | |
x[seq(N)] * -0.5 + rnorm(N, 0, 1), | |
x[seq(N + 1, N + 3)] * 0.1 + rnorm(3, 0, 0.1), | |
x[seq(N + 4, N + 6)] * 0.4 + rnorm(3, 0, 0.1) | |
) | |
m <- lm(y ~ x - 1) | |
get_H <- \(x) x %*% solve(crossprod(x), t(x)) | |
loo_verage <- function(i, r) # Looverage of after removing r | |
H[i, i] + exp(log(H[i, r]^2) - log(1 - H[r, r])) | |
loo_H <- function(i, j = i, r) # H[i, j] after removing r | |
H[i, j] + H[i, r] * H[j, r] / (1 - H[r, r]) | |
lko_H <- function(i, j = i, R) { # H[i, j] after removing set R | |
if(length(R) == 0) return(H[i, j]) | |
Recall(i, j, R[-1]) + | |
Recall(i, R[1], R[-1]) * Recall(j, R[1], R[-1]) / | |
(1 - Recall(R[1], R[1], R[-1])) | |
} | |
H <- get_H(x) # Projection matrix | |
# Leave-one-out leverage in row i for removals of column j | |
LOO_verage <- diag(H) + t(exp(log(H^2) - log(1 - diag(H)))) | |
# Updating formula for the inverse to get the coefficients | |
update_inv <- function(XX_inv, X_rm) { | |
XX_inv + (XX_inv %*% crossprod(X_rm) %*% XX_inv) / | |
as.numeric(1 - X_rm %*% tcrossprod(XX_inv, X_rm)) | |
} | |
# Leave-one-out DFBETA | |
Sx_inv <- chol2inv(chol(crossprod(x))) | |
dfe <- resid(m) + t(H * resid(m) / (1 - diag(H))) # Updated error | |
LOO_dfbeta <- matrix(NA_real_, NROW(x), NROW(x)) | |
for(j in seq_len(NROW(x))) { | |
LOO_dfbeta[, j] <- (t(update_inv(Sx_inv, x[j, , drop = FALSE]) %*% | |
t(x * dfe[, j])) / (1 - LOO_verage[, j]))[, 1L] | |
} | |
# Check equivalence | |
abs(loo_verage(1, r = 2) - | |
get_H(x[-2, ])[1, 1]) < prec | |
abs(loo_H(1, 2, r = N) - | |
get_H(x[-N, ])[1, 2]) < prec | |
abs(lko_H(1, 2, R = seq(3, 7)) - | |
get_H(x[-seq(3, 7), ])[1, 2]) < prec | |
all(abs(LOO_verage[-N, N] - | |
diag(get_H(x[-N, ]))) < prec) | |
all(abs(LOO_dfbeta[-1, 1] - | |
dfbeta(lm(y[-1] ~ x[-1, ] - 1))[, 1]) < prec) | |
abs(coef(m)[1] - dfbeta(m)[1, 1] - LOO_dfbeta[2, 1] - | |
coef(lm(y[-1:-2] ~ x[-1:-2, ] - 1))[1]) < prec |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment