Skip to content

Instantly share code, notes, and snippets.

@nkreeger
Created November 15, 2019 17:01
Show Gist options
  • Save nkreeger/29a6498348d201306baa127774b13a60 to your computer and use it in GitHub Desktop.
Save nkreeger/29a6498348d201306baa127774b13a60 to your computer and use it in GitHub Desktop.
import numpy as np
import tensorflow as tf
# Sample 2x FC (dense) model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(48, input_shape=(16,)))
model.add(tf.keras.layers.Dense(48))
model.add(tf.keras.layers.Softmax())
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary()
# Generate random data
data_x = np.random.rand(16, 16)
data_y = np.random.randint(2, size=(16, 1))
# Train
model.fit(data_x, data_y, epochs=16)
# Representative dataset for full quantization:
def representative_dataset_gen():
for _ in range(16):
yield [np.random.rand(1, 16).astype(np.float32)]
# Convert to fixed-point
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
converter.representative_dataset = representative_dataset_gen
tflite_model = converter.convert()
# Save
open("/tmp/fc_fp_quant_model.tflite", "wb").write(tflite_model)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment