Skip to content

Instantly share code, notes, and snippets.

@nna774
Created August 15, 2012 15:48
SKコンビネータ
{-# OPTIONS -fglasgow-exts #-}
i :: forall a. a -> a
i = \x -> x
k :: forall a b. a -> b -> a
k = \x -> \y -> x
s :: forall a b c. (a -> b -> c) -> (a -> b) -> a -> c
s = \x -> \y -> \z -> x z $ y z
ks :: forall a b c d. d -> ( (a -> b -> c) -> (a -> b) -> a -> c )
ks = k s
zero :: forall a. (a -> a) -> a -> a
zero = k i
--one :: (a -> a) -> a -> a
--one = \f -> \x -> f x
--two :: (a -> a) -> a -> a
--two = s (s ks k)i -- S(S(KS)K)I
suc :: forall a. ( (a -> a) -> a -> a ) -> ( (a -> a) -> a -> a )
-- suc = \l -> \f -> \x -> l f $ f x
suc = s (s ks k) -- S(S(KS)K)
_1 :: forall a. (a -> a) -> a -> a
_1 = suc zero
_2 :: forall a. (a -> a) -> a -> a
_2 = suc _1
_3 :: forall a. (a -> a) -> a -> a
_3 = suc _2
_4 :: forall a. (a -> a) -> a -> a
_4 = _2 _2
_8 :: forall a. (a -> a) -> a -> a
_8 = _3 _2
_16 :: forall a. (a -> a) -> a -> a
_16 = _4 _2
_256 :: forall a. (a -> a) -> a -> a
_256 = _4 _4
true :: forall a b. a -> b -> a
true = k
false :: forall a b. a -> b -> b
false = \x -> \y -> y
cons :: forall a b c. a -> b -> (a -> b -> c) -> c
cons = \x -> \y -> s (s i (k x)) (k y)
--cons = s(k(s(k(s i))k))
car :: forall a b. ((a -> b -> a) -> a) -> a
car = \z -> z true
cdr :: forall a b. ((a -> b -> b) -> b) -> b
cdr = \z -> z false
--cdar :: forall a b c. (c -> ((a -> b -> a) -> a) -> a) -> a
cdar = \z -> car $ cdr z
cddr = \z -> cdr $ cdr z
cddar = \z -> car $ cdr $ cdr z
cdddr = \z -> cdr $ cdr $ cdr z
_if :: (a -> b -> c) -> a -> b -> c
_if = \c -> \x -> \y -> c x y
--nil :: ()
--nil = ()
nil = false
_not :: ((a -> b -> b) -> (a -> b -> a) -> c) -> c
_not = \x -> _if x false true
--main = print $ (car (cons 2 1)) -- (succ) 0
-- B ( λxyz. x(yz) )
-- C ( λxyz. xzy )
-- W ( λxy. xyy )
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment