Skip to content

Instantly share code, notes, and snippets.

@non

non/math32.tal Secret

Last active Feb 8, 2022
Embed
What would you like to do?
32-bit arithmetic for uxntal
( math32.tal )
( )
( This library supports arithmetic on 32-bit unsigned integers, )
( also known as long values. )
( )
( 32-bit long values are represented by two 16-bit short values: )
( )
( decimal hexadecimal uxn literals )
( 0 0x00000000 #0000 #0000 )
( 1 0x00000001 #0000 #0001 )
( 4660 0x00001234 #0000 #1234 )
( 65535 0x0000ffff #0000 #ffff )
( 65536 0x00010000 #0001 #0000 )
( 16777215 0x00ffffff #00ff #ffff )
( 4294967295 0xffffffff #ffff #ffff )
( )
( The most significant 16-bit, the "high bits", are stored first. )
( We document long values as x** -- equivalent to xhi* xlo*. )
( )
( Operations supported: )
( )
( NAME STACK EFFECT DEFINITION )
( add32 x** y** -> z** x + y )
( sub32 x** y** -> z** x - y )
( mul16 x* y* -> z** x * y )
( mul32 x** y** -> z** x * y )
( div32 x** y** -> q** x / y )
( mod32 x** y** -> r** x % y )
( divmod32 x** y** -> q** r** x / y, x % y )
( gcd32 x** y** -> z** gcd(x, y) )
( negate32 x** -> z** -x )
( lshift32 x** n^ -> z** x<<n )
( rshift32 x** n^ -> z** x>>n )
( and32 x** y** -> z** x & y )
( or32 x** y** -> z** x | y )
( xor32 x** y** -> z** x ^ y )
( complement32 x** -> z** ~x )
( eq32 x** y** -> bool^ x == y )
( ne32 x** y** -> bool^ x != y )
( is-zero32 x** -> bool^ x == 0 )
( non-zero32 x** -> bool^ x != 0 )
( lt32 x** y** -> bool^ x < y )
( gt32 x** y** -> bool^ x > y )
( lteq32 x** y** -> bool^ x <= y )
( gteq32 x** y** -> bool^ x >= y )
( bitcount8 x^ -> bool^ floor(log2(x))+1 )
( bitcount16 x* -> bool^ floor(log2(x))+1 )
( bitcount32 x** -> bool^ floor(log2(x))+1 )
( )
( In addition to the code this file uses 44 bytes of registers )
( to store temporary state: )
( )
( - shared memory, 16 bytes )
( - mul32 memory, 12 bytes )
( - _divmod32 memory, 16 bytes )
%RTN { JMP2r }
%TOR { ROT ROT } ( a b c -> c a b )
%COMPLEMENT32 { SWP2 #ffff EOR2 SWP2 #ffff EOR2 }
%DUP4 { OVR2 OVR2 }
%POP4 { POP2 POP2 }
( bitcount: number of bits needed to represent number )
( equivalent to floor[log2[x]] + 1 )
@bitcount8 ( x^ -> n^ )
#00 SWP ( n x )
&loop
DUP #00 EQU ( n x x=0 )
,&done JCN ( n x )
#01 SFT ( n x>>1 )
SWP INC SWP ( n+1 x>>1 )
,&loop JMP
&done
POP ( n )
RTN
@bitcount16 ( x* -> n^ )
SWP ( xlo xhi )
;bitcount8 JSR2 ( xlo nhi )
DUP #00 NEQ ( xlo nhi nhi!=0 )
,&hi-set JCN ( xlo nhi )
SWP ;bitcount8 JSR2 ADD ( nhi+nlo )
RTN
&hi-set
SWP POP #08 ADD ( nhi+8 )
RTN
@bitcount32 ( x** -> n^ )
SWP2 ( xlo* xhi* )
;bitcount16 JSR2 ( xlo* nhi )
DUP #00 NEQ ( xlo* nhi nhi!=0 )
,&hi-set JCN ( xlo* nhi )
TOR ;bitcount16 JSR2 ADD RTN ( nhi+nlo )
&hi-set
TOR POP2 #10 ADD ( nhi+16 )
RTN
( equality )
( x == y )
@eq32 ( xhi* xlo* yhi* ylo* -> bool^ )
ROT2 EQU2 STH
EQU2 STHr AND RTN
( x != y )
@ne32 ( xhi* xlo* yhi* ylo* -> bool^ )
ROT2 NEQ2 STH
NEQ2 STHr ORA RTN
( x == 0 )
@is-zero32 ( x** -> bool^ )
ORA2 #0000 EQU2 RTN
( x != 0 )
@non-zero32 ( x** -> bool^ )
ORA2 #0000 NEQ2 RTN
( comparisons )
( x < y )
@lt32 ( x** y** -> bool^ )
ROT2 SWP2 ( xhi yhi xlo ylo )
LTH2 ,&lt-lo JCN ( xhi yhi )
LTH2 RTN
&lt-lo
GTH2 #00 EQU RTN
( x <= y )
@lteq32 ( x** y** -> bool^ )
ROT2 SWP2 ( xhi yhi xlo ylo )
GTH2 ,&gt-lo JCN ( xhi yhi )
GTH2 #00 EQU RTN
&gt-lo
LTH2 RTN
( x > y )
@gt32 ( x** y** -> bool^ )
ROT2 SWP2 ( xhi yhi xlo ylo )
GTH2 ,&gt-lo JCN ( xhi yhi )
GTH2 RTN
&gt-lo
LTH2 #00 EQU RTN
( x > y )
@gteq32 ( x** y** -> bool^ )
ROT2 SWP2 ( xhi yhi xlo ylo )
LTH2 ,&lt-lo JCN ( xhi yhi )
LTH2 #00 EQU RTN
&lt-lo
GTH2 RTN
( bitwise operations )
( x & y )
@and32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* )
ROT2 AND2 STH2 AND2 STH2r RTN
( x | y )
@or32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* )
ROT2 ORA2 STH2 ORA2 STH2r RTN
( x ^ y )
@xor32 ( xhi* xlo* yhi* ylo* -> xhi|yhi* xlo|ylo* )
ROT2 EOR2 STH2 EOR2 STH2r RTN
( ~x )
@complement32 ( x** -> ~x** )
COMPLEMENT32 RTN
( temporary registers )
( shared by most operations, except mul32 and div32 )
@m32 [ &x0 $1 &x1 $1 &x2 $1 &x3 $1
&y0 $1 &y1 $1 &y2 $1 &y3 $1
&z0 $1 &z1 $1 &z2 $1 &z3 $1
&w0 $1 &w1 $1 &w2 $2 ]
( bit shifting )
( x >> n )
@rshift32 ( x** n^ -> x<<n )
DUP #08 LTH ;rshift32-0 JCN2 ( x n )
DUP #10 LTH ;rshift32-1 JCN2 ( x n )
DUP #18 LTH ;rshift32-2 JCN2 ( x n )
;rshift32-3 JMP2 ( x n )
RTN
( shift right by 0-7 bits )
@rshift32-0 ( x** n^ -> x<<n )
STHk SFT ;m32/z3 STA ( write z3 )
#00 STHkr SFT2 #00 ;m32/z3 LDA ORA2 ;m32/z2 STA2 ( write z2,z3 )
#00 STHkr SFT2 #00 ;m32/z2 LDA ORA2 ;m32/z1 STA2 ( write z1,z2 )
#00 STHr SFT2 #00 ;m32/z1 LDA ORA2 ( compute z0,z1 )
;m32/z2 LDA2
RTN
( shift right by 8-15 bits )
@rshift32-1 ( x** n^ -> x<<n )
#08 SUB STH POP
STHkr SFT ;m32/z3 STA ( write z3 )
#00 STHkr SFT2 #00 ;m32/z3 LDA ORA2 ;m32/z2 STA2 ( write z2,z3 )
#00 STHr SFT2 #00 ;m32/z2 LDA ORA2 ( compute z1,z2 )
#00 TOR ;m32/z3 LDA
RTN
( shift right by 16-23 bits )
@rshift32-2 ( x** n^ -> x<<n )
#10 SUB STH POP2
STHkr SFT ;m32/z3 STA ( write z3 )
#00 STHr SFT2 #00 ;m32/z3 LDA ORA2 ( compute z2,z3 )
#0000 SWP2
RTN
( shift right by 16-23 bits )
@rshift32-3 ( x** n^ -> x<<n )
#18 SUB STH POP2 POP ( x0 )
#00 SWP #0000 SWP2 ( 00 00 00 x0 )
STHr SFT
RTN
( x << n )
@lshift32 ( x** n^ -> x<<n )
DUP #08 LTH ;lshift32-0 JCN2 ( x n )
DUP #10 LTH ;lshift32-1 JCN2 ( x n )
DUP #18 LTH ;lshift32-2 JCN2 ( x n )
;lshift32-3 JMP2 ( x n )
RTN
( shift left by 0-7 bits )
@lshift32-0 ( x** n^ -> x<<n )
#40 SFT STH ( stash n<<4 )
#00 SWP STHkr SFT2 ;m32/z2 STA2 ( store z2,z3 )
#00 SWP STHkr SFT2 #00 ;m32/z2 LDA ORA2 ;m32/z1 STA2 ( store z1,z2 )
#00 SWP STHkr SFT2 #00 ;m32/z1 LDA ORA2 ;m32/z0 STA2 ( store z0,z1 )
STHr SFT ;m32/z0 LDA ORA ( calculate z0 )
;m32/z1 LDA ;m32/z2 LDA2
RTN
( shift left by 8-15 bits )
@lshift32-1 ( x** n^ -> x<<n )
#08 SUB #40 SFT STH ( stash [n-8]<<4 )
#00 SWP STHkr SFT2 ;m32/z1 STA2 ( store z1,z2 )
#00 SWP STHkr SFT2 #00 ;m32/z1 LDA ORA2 ;m32/z0 STA2 ( store z0,z1 )
STHr SFT ;m32/z0 LDA ORA ( calculate z0 )
SWP POP ( x0 unused )
;m32/z1 LDA2 #00
RTN
( shift left by 16-23 bits )
@lshift32-2 ( x** n^ -> x<<n )
#10 SUB #40 SFT STH ( stash [n-16]<<4 )
#00 SWP STHkr SFT2 ;m32/z0 STA2 ( store z0,z1 )
STHr SFT ;m32/z0 LDA ORA ( calculate z0 )
STH POP2 STHr
;m32/z1 LDA #0000
RTN
( shift left by 24-31 bits )
@lshift32-3 ( x** n^ -> x<<n )
#18 SUB #40 SFT ( x0 x1 x2 x3 r=[n-24]<<4 )
SFT ( x0 x1 x2 x3<<r )
SWP2 POP2 SWP POP #0000 #00
RTN
( arithmetic )
( x + y )
@add32 ( xhi* xlo* yhi* ylo* -> zhi* zlo* )
;m32/y2 STA2 ;m32/y0 STA2 ( save ylo, yhi )
;m32/x2 STA2 ;m32/x0 STA2 ( save xlo, xhi )
#0000 #0000 ;m32/z0 STA2 ;m32/z2 STA2 ( reset zhi, zlo )
( x3 + y3 => z2z3 )
#00 ;m32/x3 LDA #00 ;m32/y3 LDA ADD2 ;m32/z2 STA2
( x2 + y2 + z2 => z1z2 )
#00 ;m32/x2 LDA ;m32/z1 LDA2 ADD2 ;m32/z1 STA2
#00 ;m32/y2 LDA ;m32/z1 LDA2 ADD2 ;m32/z1 STA2
( x1 + y1 + z1 => z0z1 )
#00 ;m32/x1 LDA ;m32/z0 LDA2 ADD2 ;m32/z0 STA2
#00 ;m32/y1 LDA ;m32/z0 LDA2 ADD2 ;m32/z0 STA2
( x0 + y0 + z0 => z0 )
;m32/x0 LDA ;m32/z0 LDA ADD ;m32/z0 STA
;m32/y0 LDA ;m32/z0 LDA ADD ;m32/z0 STA
( load zhi,zlo )
;m32/z0 LDA2 ;m32/z2 LDA2
RTN
( -x )
@negate32 ( x** -> -x** )
COMPLEMENT32
INC2 ( ~xhi -xlo )
DUP2 #0000 NEQ2 ( ~xhi -xlo non-zero? )
,&done JCN ( xlo non-zero => don't inc hi )
SWP2 INC2 SWP2 ( -xhi -xlo )
&done
RTN
( x - y )
@sub32 ( x** y** -> z** )
;negate32 JSR2 ;add32 JSR2 RTN
( 16-bit multiplication )
@mul16 ( x* y* -> z** )
;m32/y1 STA ;m32/y0 STA ( save ylo, yhi )
;m32/x1 STA ;m32/x0 STA ( save xlo, xhi )
#0000 #00 ;m32/z1 STA2 ;m32/z3 STA ( reset z1,z2,z3 )
#0000 #00 ;m32/w0 STA2 ;m32/w2 STA ( reset w0,w1,w2 )
( x1 * y1 => z1z2 )
#00 ;m32/x1 LDA #00 ;m32/y1 LDA MUL2 ;m32/z2 STA2
( x0 * y1 => z0z1 )
#00 ;m32/x0 LDA #00 ;m32/y1 LDA MUL2 ;m32/z1 LDA2 ADD2 ;m32/z1 STA2
( x1 * y0 => w1w2 )
#00 ;m32/x1 LDA #00 ;m32/y0 LDA MUL2 ;m32/w1 STA2
( x0 * y0 => w0w1 )
#00 ;m32/x0 LDA #00 ;m32/y0 LDA MUL2 ;m32/w0 LDA2 ADD2 ;m32/w0 STA2
( add z and a<<8 )
#00 ;m32/z1 LDA2 ;m32/z3 LDA
;m32/w0 LDA2 ;m32/w2 LDA #00
;add32 JSR2
RTN
( x * y )
@mul32 ( x** y** -> z** )
,&y1 STR2 ,&y0 STR2 ( save ylo, yhi )
,&x1 STR2 ,&x0 STR2 ( save xlo, xhi )
,&y1 LDR2 ,&x1 LDR2 ;mul16 JSR2 ( [x1*y1] )
,&z1 STR2 ,&z0 STR2 ( sum = x1*y1, save zlo, zhi )
,&y1 LDR2 ,&x0 LDR2 MUL2 ( [x0*y1]<<16 )
,&y0 LDR2 ,&x1 LDR2 MUL2 ( [x1*y0]<<16 )
( [x0*y0]<<32 will completely overflow )
ADD2 ,&z0 LDR2 ADD2 ( sum += x0*y1<<16 + x1*y0<<16 )
,&z1 LDR2
RTN
[ &x0 $2 &x1 $2
&y0 $2 &y1 $2
&z0 $2 &z1 $2 ]
@div32 ( x** y** -> q** )
;_divmod32 JSR2
;_divmod32/quo0 LDA2 ;_divmod32/quo1 LDA2
RTN
@mod32 ( x** y** -> r** )
;_divmod32 JSR2
;_divmod32/rem0 LDA2 ;_divmod32/rem1 LDA2
RTN
@divmod32 ( x** y** -> q** r** )
;_divmod32 JSR2
;_divmod32/quo0 LDA2 ;_divmod32/quo1 LDA2
;_divmod32/rem0 LDA2 ;_divmod32/rem1 LDA2
RTN
( calculate and store x / y and x % y )
@_divmod32 ( x** y** -> )
( store y and x for repeated use )
,&div1 STR2 ,&div0 STR2 ( y -> div )
,&rem1 STR2 ,&rem0 STR2 ( x -> rem )
( if x < y then the answer is 0 )
,&rem0 LDR2 ,&rem1 LDR2
,&div0 LDR2 ,&div1 LDR2
;lt32 JSR2 ,&is-zero JCN ,&not-zero JMP
&is-zero
#0000 ,&quo0 STR2 #0000 ,&quo1 STR2 RTN
( x >= y so the answer is >= 1 )
&not-zero
#0000 ,&quo0 STR2 #0000 ,&quo1 STR2 ( 0 -> quo )
( bitcount[x] - bitcount[y] determines the largest multiple of y to try )
,&rem0 LDR2 ,&rem1 LDR2 ;bitcount32 JSR2 ( rbits^ )
,&div0 LDR2 ,&div1 LDR2 ;bitcount32 JSR2 ( rbits^ dbits^ )
SUB ( shift=rbits-dits )
#00 DUP2 ( shift 0 shift 0 )
( 1<<shift -> cur )
#0000 #0001 ROT2 POP
;lshift32 JSR2 ,&cur1 STR2 ,&cur0 STR2
( div<<shift -> div )
,&div0 LDR2 ,&div1 LDR2 ROT2 POP
;lshift32 JSR2 ,&div1 STR2 ,&div0 STR2
,&loop JMP
[ &div0 $2 &div1 $2
&rem0 $2 &rem1 $2
&quo0 $2 &quo1 $2
&cur0 $2 &cur1 $2 ]
&loop
( if rem >= the current divisor, we can subtract it and add to quotient )
,&rem0 LDR2 ,&rem1 LDR2 ,&div0 LDR2 ,&div1 LDR2 ;lt32 JSR2 ( is rem < div? )
,&rem-lt JCN ( if rem < div skip this iteration )
( since rem >= div, we have found a multiple of y that divides x )
,&rem0 LDR2 ,&rem1 LDR2 ,&div0 LDR2 ,&div1 LDR2 ;sub32 JSR2 ,&rem1 STR2 ,&rem0 STR2 ( rem -= div )
,&quo0 LDR2 ,&quo1 LDR2 ,&cur0 LDR2 ,&cur1 LDR2 ;add32 JSR2 ,&quo1 STR2 ,&quo0 STR2 ( quo += cur )
&rem-lt
,&div0 LDR2 ,&div1 LDR2 #01 ;rshift32 JSR2 ,&div1 STR2 ,&div0 STR2 ( div >>= 1 )
,&cur0 LDR2 ,&cur1 LDR2 #01 ;rshift32 JSR2 ,&cur1 STR2 ,&cur0 STR2 ( cur >>= 1 )
,&cur0 LDR2 ,&cur1 LDR2 ;non-zero32 JSR2 ,&loop JCN ( if cur>0, loop. else we're done )
RTN
( greatest common divisor - euclidean algorithm )
@gcd32 ( x** y** -> z** )
&loop ( x y )
DUP4 ( x y y )
;is-zero32 JSR2 ( x y y=0? )
,&done JCN ( x y )
DUP4 ( x y y )
STH2 STH2 ( x y [y] )
;mod32 JSR2 ( r=x%y [y] )
STH2r ( rhi rlo yhi [ylo] )
ROT2 ( rlo yhi rhi [ylo] )
ROT2 ( yhi rhi rlo [ylo] )
STH2r ( yhi rhi rlo ylo )
ROT2 ( yhi rlo ylo rhi )
ROT2 ( yhi ylo rhi rlo )
,&loop JMP
&done
POP4 ( x )
RTN
( test-math32.tal )
( )
( methods for testing math32 and emitting output )
%EMIT { #18 DEO }
%DIGIT { #00 SWP ;digits ADD2 LDA EMIT }
%SPACE { #20 EMIT }
%NEWLINE { #0a EMIT }
%RESET-POS { #0000 ;pos STA2 #00 ;buf STA }
%EMIT-BYTE { DUP #04 SFT DIGIT #0f AND DIGIT }
( devices )
|10 @Console [ &vector $2 &read $1 &pad $5 &write $1 ]
( program )
|0100 ;test-interact .Console/vector DEO2 BRK
( include math32 library )
~math32.tal
( testing )
( parses hex representation e.g. #31 #33 -> #13 )
@parse-byte ( c0 c1 -> x^ )
( lower char )
DUP #3a LTH ,&lo-digit JCN
#57 ,&lo JMP &lo-digit #30
&lo SUB SWP
( higher char )
DUP #3a LTH ,&hi-digit JCN
#57 ,&hi JMP &hi-digit #30
&hi SUB #40 SFT ORA
RTN
@buf $24 ( buffer used by test-interact )
@pos $2 ( position in buffer used by test-interact )
( save character input and execute tests on \n )
( tests always start with a single character and a space )
( then additional arguments are passed. )
@test-interact
.Console/read DEI ( char^ )
DUP #0a EQU ( char^ char=\n? )
,&exec JCN ( char^ )
;pos LDA2 ;buf ADD2 STA
;pos LDA2k INC2 SWP2 STA2 BRK
&exec
POP ( )
;buf LDA LIT '+ EQU ;test-add32 JCN2
;buf LDA LIT '* EQU ;test-mul32 JCN2
;buf LDA LIT '- EQU ;test-sub32 JCN2
;buf LDA LIT '/ EQU ;test-div32 JCN2
;buf LDA LIT '% EQU ;test-mod32 JCN2
;buf LDA LIT 'G EQU ;test-gcd32 JCN2
;buf LDA LIT 'L EQU ;test-lshift32 JCN2
;buf LDA LIT 'R EQU ;test-rshift32 JCN2
;buf LDA LIT 'B EQU ;test-bitcount32 JCN2
;buf LDA LIT '& EQU ;test-and32 JCN2
;buf LDA LIT '| EQU ;test-or32 JCN2
;buf LDA LIT '^ EQU ;test-xor32 JCN2
;buf LDA LIT '~ EQU ;test-complement32 JCN2
;buf LDA LIT 'N EQU ;test-negate32 JCN2
;buf LDA LIT '= EQU ;test-eq32 JCN2
;buf LDA LIT '! EQU ;test-ne32 JCN2
;buf LDA LIT '0 EQU ;test-is-zero32 JCN2
;buf LDA LIT 'Z EQU ;test-non-zero32 JCN2
;buf LDA LIT '< EQU ;test-lt32 JCN2
;buf LDA LIT '> EQU ;test-gt32 JCN2
;buf LDA LIT '{ EQU ;test-lteq32 JCN2
;buf LDA LIT '} EQU ;test-gteq32 JCN2
LIT '? EMIT NEWLINE RESET-POS BRK
@read-byte ( addr* -> x^ )
LDA2 ;parse-byte JSR2
RTN
@read-long ( addr* -> x** )
DUP2 ,&loc STR2 LDA2 ;parse-byte JSR2
,&loc LDR2 #0002 ADD2 LDA2 ;parse-byte JSR2
,&loc LDR2 #0004 ADD2 LDA2 ;parse-byte JSR2
,&loc LDR2 #0006 ADD2 LDA2 ;parse-byte JSR2
RTN
[ &loc $2 ]
( format: ". xxxxxxxx" -> "zzzzzzzz" )
@unary-32-test
;buf #0002 ADD2 ;read-long JSR2
ROT2 JSR2 ;emit-long JSR2
NEWLINE RESET-POS BRK
( format: ". xxxxxxxx" -> "zz" )
@unary-32-8-test
;buf #0002 ADD2 ;read-long JSR2
ROT2 JSR2 ;emit-byte JSR2
NEWLINE RESET-POS BRK
( format: ". xxxxxxxx yyyyyyyy" -> "zzzzzzzz" )
@binary-32-test
;buf #0002 ADD2 ;read-long JSR2
ROT2
;buf #000b ADD2 ;read-long JSR2
ROT2 JSR2 ;emit-long JSR2
NEWLINE RESET-POS BRK
( format: ". xxxxxxxx yy" -> "zzzzzzzz" )
@binary-32-8-32-test
;buf #0002 ADD2 ;read-long JSR2
ROT2
;buf #000b ADD2 ;read-byte JSR2
TOR JSR2 ;emit-long JSR2
NEWLINE RESET-POS BRK
( format: ". xxxxxxxx yyyyyyyy" -> "zz" )
@binary-32-32-8-test
;buf #0002 ADD2 ;read-long JSR2
ROT2
;buf #000b ADD2 ;read-long JSR2
ROT2 JSR2 ;emit-byte JSR2
NEWLINE RESET-POS BRK
( different test executors )
@test-add32 ;add32 ;binary-32-test JMP2
@test-mul32 ;mul32 ;binary-32-test JMP2
@test-sub32 ;sub32 ;binary-32-test JMP2
@test-div32 ;div32 ;binary-32-test JMP2
@test-mod32 ;mod32 ;binary-32-test JMP2
@test-gcd32 ;gcd32 ;binary-32-test JMP2
@test-lshift32 ;lshift32 ;binary-32-8-32-test JMP2
@test-rshift32 ;rshift32 ;binary-32-8-32-test JMP2
@test-bitcount32 ;bitcount32 ;unary-32-8-test JMP2
@test-and32 ;and32 ;binary-32-test JMP2
@test-or32 ;or32 ;binary-32-test JMP2
@test-xor32 ;xor32 ;binary-32-test JMP2
@test-complement32 ;complement32 ;unary-32-test JMP2
@test-negate32 ;negate32 ;unary-32-test JMP2
@test-eq32 ;eq32 ;binary-32-32-8-test JMP2
@test-ne32 ;ne32 ;binary-32-32-8-test JMP2
@test-is-zero32 ;is-zero32 ;unary-32-8-test JMP2
@test-non-zero32 ;non-zero32 ;unary-32-8-test JMP2
@test-lt32 ;lt32 ;binary-32-32-8-test JMP2
@test-lteq32 ;lteq32 ;binary-32-32-8-test JMP2
@test-gt32 ;gt32 ;binary-32-32-8-test JMP2
@test-gteq32 ;gteq32 ;binary-32-32-8-test JMP2
@emit-long ( hi* lo* -> )
SWP2
SWP EMIT-BYTE EMIT-BYTE
SWP EMIT-BYTE EMIT-BYTE
RTN
@emit-byte ( x^ -> )
EMIT-BYTE
RTN
( convenience for less branching when printing hex )
@digits
30 31 32 33 34 35 36 37
38 39 61 62 63 64 65 66
#!/usr/bin/python
from math import floor, log
from os import environ
from random import randint
from subprocess import Popen, PIPE, run
u3 = {'sz': 1 << 3, 'fmt': b'%02x'}
u5 = {'sz': 1 << 5, 'fmt': b'%02x'}
u8 = {'sz': 1 << 8, 'fmt': b'%02x'}
u16 = {'sz': 1 << 16, 'fmt': b'%04x'}
u32 = {'sz': 1 << 32, 'fmt': b'%08x'}
def fmt(gx, x):
return gx['fmt'].decode('utf-8') % (x % gx['sz'])
def testcase(p, sym, args, out, f):
vals = [(name, g, randint(0, g['sz'] - 1)) for (name, g) in args]
p.stdin.write(sym)
for _, g, x in vals:
p.stdin.write(b' ')
p.stdin.write(g['fmt'] % x)
p.stdin.write(b'\n')
p.stdin.flush()
got = p.stdout.readline().strip().decode('utf-8')
xs = [x for _, _, x in vals]
z = f(*xs)
expected = fmt(out, z)
if got == expected:
return None
else:
res = {'got': got, 'expected': expected}
for name, _, x in vals:
res[name] = x
return res
def test(p, trials, sym, args, out, f):
fails = 0
cases = []
maximum = (1 << 32) - 1
for i in range(0, trials):
case = testcase(p, sym, args, out, f)
if case is not None:
fails += 1
cases.append(case)
name = sym.decode('utf-8')
if fails == 0:
print('%s passed %d trials' % (name, trials))
else:
print('%s failed %d/%d trials (%r)' % (name, fails, trials, cases))
def pipe():
return Popen(['uxncli', 'run.rom'], stdin=PIPE, stdout=PIPE)
def bitcount(x):
return floor(log(x, 2)) + 1
def gcd(a, b):
return a if b == 0 else gcd(b, a % b)
def main():
trials = 100
run(['uxnasm', 'test-math32.tal', 'run.rom'])
p = pipe()
test(p, trials, b'+', [('x', u32), ('y', u32)], u32, lambda x, y: x + y)
test(p, trials, b'-', [('x', u32), ('y', u32)], u32, lambda x, y: x - y)
test(p, trials, b'*', [('x', u32), ('y', u32)], u32, lambda x, y: x * y)
test(p, trials, b'/', [('x', u32), ('y', u32)], u32, lambda x, y: x // y)
test(p, trials, b'%', [('x', u32), ('y', u32)], u32, lambda x, y: x % y)
test(p, trials, b'G', [('x', u32), ('y', u32)], u32, gcd)
test(p, trials, b'L', [('x', u32), ('y', u5)], u32, lambda x, y: x << y)
test(p, trials, b'R', [('x', u32), ('y', u5)], u32, lambda x, y: x >> y)
test(p, trials, b'B', [('x', u32)], u8, bitcount)
test(p, trials, b'&', [('x', u32), ('y', u32)], u32, lambda x, y: x & y)
test(p, trials, b'|', [('x', u32), ('y', u32)], u32, lambda x, y: x | y)
test(p, trials, b'^', [('x', u32), ('y', u32)], u32, lambda x, y: x ^ y)
test(p, trials, b'~', [('x', u32)], u32, lambda x: ~x)
test(p, trials, b'N', [('x', u32)], u32, lambda x: -x)
test(p, trials, b'=', [('x', u32), ('y', u32)], u8, lambda x, y: int(x == y))
test(p, trials, b'!', [('x', u32), ('y', u32)], u8, lambda x, y: int(x != y))
test(p, trials, b'0', [('x', u32)], u8, lambda x: int(x == 0))
test(p, trials, b'Z', [('x', u32)], u8, lambda x: int(x != 0))
test(p, trials, b'<', [('x', u32), ('y', u32)], u8, lambda x, y: int(x < y))
test(p, trials, b'>', [('x', u32), ('y', u32)], u8, lambda x, y: int(x > y))
test(p, trials, b'{', [('x', u32), ('y', u32)], u8, lambda x, y: int(x <= y))
test(p, trials, b'}', [('x', u32), ('y', u32)], u8, lambda x, y: int(x >= y))
p.stdin.close()
p.stdout.close()
if __name__ == "__main__":
main()
@Ismael-VC
Copy link

Ismael-VC commented Dec 23, 2021

👀

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment