Skip to content

Instantly share code, notes, and snippets.

@notogawa
Last active February 3, 2019 04:35
Show Gist options
  • Save notogawa/23ea52fc4ccd2ad2588943681028300b to your computer and use it in GitHub Desktop.
Save notogawa/23ea52fc4ccd2ad2588943681028300b to your computer and use it in GitHub Desktop.
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
module Permutation
( Permutation(..)
, refl
, sym
, trans
, here
, myReverseIsPermutation
) where
import Data.Singletons.TH
import Data.Singletons.Prelude.List hiding (Reverse, ReverseSym0, ReverseSym1, sReverse)
import qualified Data.Singletons.Prelude.List as L (Reverse, ReverseSym0, ReverseSym1, sReverse)
import Data.Kind
import Data.Type.Equality (gcastWith)
-- 2つの型レベルリストにおける置換関係
data Permutation :: [k] -> [k] -> Type where
PermutationNil :: Permutation '[] '[]
PermutationSkip :: Sing a -> Permutation xs ys -> Permutation (a : xs) (a : ys)
PermutationSwap :: Sing a -> Sing b -> Permutation (a : b : xs) (b : a : xs)
PermutationTrans :: Permutation xs ys -> Permutation ys zs -> Permutation xs zs
s1 :: Sing 1
s1 = sing
s2 :: Sing 2
s2 = sing
s3 :: Sing 3
s3 = sing
s4 :: Sing 4
s4 = sing
-- おためし
testPermutation :: Permutation [1,2,3,4] [2,4,3,1]
testPermutation =
PermutationTrans (PermutationSwap s1 s2) $
PermutationTrans (PermutationSkip s2 $ PermutationSwap s1 s3) $
PermutationTrans (PermutationSkip s2 $ PermutationSkip s3 $ PermutationSwap s1 s4) $
PermutationSkip s2 $ PermutationSwap s3 s4
-- 反射律
refl :: Sing xs -> Permutation xs xs
refl SNil = PermutationNil
refl (SCons x xs) = PermutationSkip x $ refl xs
-- 対称律
sym :: Permutation xs ys -> Permutation ys xs
sym PermutationNil = PermutationNil
sym (PermutationSkip s p) = PermutationSkip s $ sym p
sym (PermutationSwap a b) = PermutationSwap b a
sym (PermutationTrans p1 p2) = PermutationTrans (sym p2) (sym p1)
-- 推移律
trans :: Permutation xs ys -> Permutation ys zs -> Permutation xs zs
trans = PermutationTrans
-- 先頭への要素追加と途中への要素追加はPermutation的には同じ
here :: Sing a -> Sing xs -> Sing ys -> Permutation (a : xs :++ ys) (xs :++ (a : ys))
here a SNil ys = PermutationSkip a $ refl ys
here a (SCons x xs) ys = PermutationTrans (PermutationSwap a x) (PermutationSkip x $ here a xs ys)
-- []は++の右単位元
nilIsRightIdentityOfAppend :: Sing xs -> (xs :++ '[]) :~: xs
nilIsRightIdentityOfAppend SNil = Refl
nilIsRightIdentityOfAppend (SCons _ xs) = gcastWith (nilIsRightIdentityOfAppend xs) Refl
-- singletonsのReverseは置換の一種の筈
reverseIsPermutation :: Sing xs -> Permutation xs (L.Reverse xs)
reverseIsPermutation SNil = PermutationNil
reverseIsPermutation (SCons x xs) = _
{-
[-Wtyped-holes]
• Found hole:
_ :: Permutation
(n0 : n1)
(Data.Singletons.Prelude.List.Let6989586621679793554Rev
(n0 : n1) n1 '[n0])
-}
-- singletonsのReverseの定義がHaskell上での証明に向いてない,
-- (補助関数revがexportされておらず証明時に展開できない)
-- ので独自のreverseを定義する
$(singletonsOnly [d|
myReverse :: [a] -> [a]
myReverse l = myReverseAcc l []
myReverseAcc :: [a] -> [a] -> [a]
myReverseAcc [] ys = ys
myReverseAcc (x:xs) ys = myReverseAcc xs (x:ys)
|])
-- MyReverseは置換の一種
myReverseIsPermutation :: Sing xs -> Permutation xs (MyReverse xs)
myReverseIsPermutation xs' = gcastWith (nilIsRightIdentityOfAppend xs') (go xs' SNil)
where
go :: Sing xs -> Sing ys -> Permutation (xs :++ ys) (MyReverseAcc xs ys)
go SNil ys = refl ys
go (SCons x xs) ys = PermutationTrans (here x xs ys) (go xs (SCons x ys))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment