Created
November 21, 2018 00:15
-
-
Save nvbn/1a8fb134917e906527cc1a178e004c70 to your computer and use it in GitHub Desktop.
SA trip analysis
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Simple image classification with Inception. | |
Run image classification with Inception trained on ImageNet 2012 Challenge data | |
set. | |
This program creates a graph from a saved GraphDef protocol buffer, | |
and runs inference on an input JPEG image. It outputs human readable | |
strings of the top 5 predictions along with their probabilities. | |
Change the --image_file argument to any jpg image to compute a | |
classification of that image. | |
Please see the tutorial and website for a detailed description of how | |
to use this script to perform image recognition. | |
https://tensorflow.org/tutorials/image_recognition/ | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import os.path | |
import re | |
import sys | |
import tarfile | |
import numpy as np | |
from six.moves import urllib | |
import tensorflow as tf | |
# pylint: disable=line-too-long | |
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' | |
# pylint: enable=line-too-long | |
model_dir = '/tmp/imagenet' | |
class NodeLookup(object): | |
"""Converts integer node ID's to human readable labels.""" | |
def __init__(self, | |
label_lookup_path=None, | |
uid_lookup_path=None): | |
if not label_lookup_path: | |
label_lookup_path = os.path.join( | |
model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') | |
if not uid_lookup_path: | |
uid_lookup_path = os.path.join( | |
model_dir, 'imagenet_synset_to_human_label_map.txt') | |
self.node_lookup = self.load(label_lookup_path, uid_lookup_path) | |
def load(self, label_lookup_path, uid_lookup_path): | |
"""Loads a human readable English name for each softmax node. | |
Args: | |
label_lookup_path: string UID to integer node ID. | |
uid_lookup_path: string UID to human-readable string. | |
Returns: | |
dict from integer node ID to human-readable string. | |
""" | |
if not tf.gfile.Exists(uid_lookup_path): | |
tf.logging.fatal('File does not exist %s', uid_lookup_path) | |
if not tf.gfile.Exists(label_lookup_path): | |
tf.logging.fatal('File does not exist %s', label_lookup_path) | |
# Loads mapping from string UID to human-readable string | |
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() | |
uid_to_human = {} | |
p = re.compile(r'[n\d]*[ \S,]*') | |
for line in proto_as_ascii_lines: | |
parsed_items = p.findall(line) | |
uid = parsed_items[0] | |
human_string = parsed_items[2] | |
uid_to_human[uid] = human_string | |
# Loads mapping from string UID to integer node ID. | |
node_id_to_uid = {} | |
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() | |
for line in proto_as_ascii: | |
if line.startswith(' target_class:'): | |
target_class = int(line.split(': ')[1]) | |
if line.startswith(' target_class_string:'): | |
target_class_string = line.split(': ')[1] | |
node_id_to_uid[target_class] = target_class_string[1:-2] | |
# Loads the final mapping of integer node ID to human-readable string | |
node_id_to_name = {} | |
for key, val in node_id_to_uid.items(): | |
if val not in uid_to_human: | |
tf.logging.fatal('Failed to locate: %s', val) | |
name = uid_to_human[val] | |
node_id_to_name[key] = name | |
return node_id_to_name | |
def id_to_string(self, node_id): | |
if node_id not in self.node_lookup: | |
return '' | |
return self.node_lookup[node_id] | |
def create_graph(): | |
"""Creates a graph from saved GraphDef file and returns a saver.""" | |
# Creates graph from saved graph_def.pb. | |
with tf.gfile.FastGFile(os.path.join( | |
model_dir, 'classify_image_graph_def.pb'), 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
_ = tf.import_graph_def(graph_def, name='') | |
def run_inference_on_image(image, num_top_predictions): | |
"""Runs inference on an image. | |
Args: | |
image: Image file name. | |
Returns: | |
Nothing | |
""" | |
if not tf.gfile.Exists(image): | |
tf.logging.fatal('File does not exist %s', image) | |
image_data = tf.gfile.FastGFile(image, 'rb').read() | |
result = [] | |
with tf.Session() as sess: | |
# Some useful tensors: | |
# 'softmax:0': A tensor containing the normalized prediction across | |
# 1000 labels. | |
# 'pool_3:0': A tensor containing the next-to-last layer containing 2048 | |
# float description of the image. | |
# 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG | |
# encoding of the image. | |
# Runs the softmax tensor by feeding the image_data as input to the graph. | |
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') | |
predictions = sess.run(softmax_tensor, | |
{'DecodeJpeg/contents:0': image_data}) | |
predictions = np.squeeze(predictions) | |
# Creates node ID --> English string lookup. | |
node_lookup = NodeLookup() | |
top_k = predictions.argsort()[-num_top_predictions:][::-1] | |
for node_id in top_k: | |
human_string = node_lookup.id_to_string(node_id) | |
score = predictions[node_id] | |
result.append((human_string, score)) | |
print('%s (score = %.5f)' % (human_string, score)) | |
return result | |
def maybe_download_and_extract(dest_directory): | |
"""Download and extract model tar file.""" | |
if not os.path.exists(dest_directory): | |
os.makedirs(dest_directory) | |
filename = DATA_URL.split('/')[-1] | |
filepath = os.path.join(dest_directory, filename) | |
if not os.path.exists(filepath): | |
def _progress(count, block_size, total_size): | |
sys.stdout.write('\r>> Downloading %s %.1f%%' % ( | |
filename, float(count * block_size) / float(total_size) * 100.0)) | |
sys.stdout.flush() | |
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) | |
print() | |
statinfo = os.stat(filepath) | |
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') | |
tarfile.open(filepath, 'r:gz').extractall(dest_directory) | |
def init(): | |
# Creates graph from saved GraphDef. | |
create_graph() | |
maybe_download_and_extract(model_dir) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
# classify_image_graph_def.pb: | |
# Binary representation of the GraphDef protocol buffer. | |
# imagenet_synset_to_human_label_map.txt: | |
# Map from synset ID to a human readable string. | |
# imagenet_2012_challenge_label_map_proto.pbtxt: | |
# Text representation of a protocol buffer mapping a label to synset ID. | |
parser.add_argument( | |
'--model_dir', | |
type=str, | |
default='/tmp/imagenet', | |
help="""\ | |
Path to classify_image_graph_def.pb, | |
imagenet_synset_to_human_label_map.txt, and | |
imagenet_2012_challenge_label_map_proto.pbtxt.\ | |
""" | |
) | |
parser.add_argument( | |
'--image_file', | |
type=str, | |
default='', | |
help='Absolute path to image file.' | |
) | |
parser.add_argument( | |
'--num_top_predictions', | |
type=int, | |
default=5, | |
help='Display this many predictions.' | |
) | |
FLAGS, unparsed = parser.parse_known_args() | |
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from datetime import datetime, timedelta | |
import glob | |
import json | |
import re | |
import matplotlib.pyplot as plt | |
import matplotlib.ticker as tkr | |
import tweepy | |
import PIL.Image | |
import PIL.ExifTags | |
import pandas as pd | |
from . import classify_image | |
pd.set_option('display.max_colwidth', -1) | |
pd.set_option('display.max_columns', None) | |
TWITTER_CONSUMER_KEY = '' | |
TWITTER_CONSUMER_SECRET = '' | |
TWITTER_ACCESS_TOKEN = '' | |
TWITTER_ACCESS_TOKEN_SECRET = '' | |
USER_ID = '21653573' | |
MARKER = '✈' | |
def get_tweets(): | |
auth = tweepy.OAuthHandler(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET) | |
auth.set_access_token(TWITTER_ACCESS_TOKEN, TWITTER_ACCESS_TOKEN_SECRET) | |
api = tweepy.API(auth) | |
cursor = tweepy.Cursor(api.user_timeline, | |
user_id=USER_ID, | |
exclude_replies='false', | |
include_rts='false', | |
count=200) | |
return cursor.items() | |
# Get tweets about flights | |
all_tweets = pd.DataFrame( | |
[(tweet.text, tweet.created_at) for tweet in get_tweets()], | |
columns=['text', 'created_at']) | |
tweets_in_dates = all_tweets[ | |
(all_tweets.created_at > datetime(2018, 9, 8)) & (all_tweets.created_at < datetime(2018, 9, 30))] | |
flights_tweets = tweets_in_dates[tweets_in_dates.text.str.upper() == tweets_in_dates.text] | |
flights_tweets = flights_tweets.assign(start=lambda df: df.text.str.split(MARKER).str[0]) | |
flights_tweets = flights_tweets.assign(finish=lambda df: df.text.str.split(MARKER).str[-1]) | |
flights = flights_tweets[['start', 'finish', 'created_at']] | |
flights = flights.sort_values('created_at') | |
def get_iata_to_city(): | |
with open('airports.json') as f: | |
data = json.load(f) | |
return {airport['iata']: airport['city'] | |
for airport in data.values() | |
if airport['iata']} | |
iata_to_city = get_iata_to_city() | |
iata_to_city['EZE'] = 'Buenos-Aires' | |
flights = flights.assign( | |
start=flights.start.apply(lambda code: iata_to_city[re.sub(r'\W+', '', code)]), | |
finish=flights.finish.apply(lambda code: iata_to_city[re.sub(r'\W+', '', code)])) | |
cities = flights.assign( | |
spent=flights.created_at - flights.created_at.shift(1), | |
city=flights.start, | |
arrived=flights.created_at.shift(1), | |
)[["city", "spent", "arrived"]] | |
cities = cities.assign(left=cities.arrived + cities.spent)[cities.spent.dt.days > 0] | |
formatter = tkr.FuncFormatter(lambda x, _: str(timedelta(seconds=x / 1000000000))) | |
cities.plot(x="city", y="spent", kind="bar", | |
legend=False, title='Cities') \ | |
.yaxis.set_major_formatter(formatter) | |
plt.tight_layout() | |
def read_photos(): | |
for name in glob.glob('photos/*.jpg'): | |
img = PIL.Image.open(name) | |
exif = { | |
PIL.ExifTags.TAGS[k]: v | |
for k, v in img._getexif().items() | |
if k in PIL.ExifTags.TAGS | |
} | |
yield name, datetime.strptime(exif['DateTime'], '%Y:%m:%d %H:%M:%S') | |
raw_photos = pd.DataFrame(list(read_photos()), columns=['name', 'created_at']) | |
photos_cities = raw_photos.assign(key=0).merge(cities.assign(key=0), how='outer') | |
photos = photos_cities[ | |
(photos_cities.created_at >= photos_cities.arrived) | |
& (photos_cities.created_at <= photos_cities.left) | |
] | |
photos_by_city = photos \ | |
.groupby(by='city') \ | |
.agg({'name': 'count'}) \ | |
.rename(columns={'name': 'photos'}) \ | |
.reset_index() | |
photos_by_city.plot(x='city', y='photos', kind="bar", | |
title='Photos by city', legend=False) | |
plt.tight_layout() | |
classify_image.init() | |
tags = photos.name\ | |
.apply(lambda name: classify_image.run_inference_on_image(name, 1)[0]) \ | |
.apply(pd.Series) | |
tags.columns = ['tag', 'score'] | |
tagged_photos = photos.copy() | |
tagged_photos[['tag', 'score']] = tags.apply(pd.Series) | |
tagged_photos['tag'] = tagged_photos.tag.apply(lambda tag: tag.split(', ')[0]) | |
photos_by_tag = tagged_photos[['tag', 'name']] \ | |
.groupby(by='tag') \ | |
.agg({'name': 'count'}) \ | |
.rename(columns={'name': 'photos'}) \ | |
.reset_index() \ | |
.sort_values('photos', ascending=False) \ | |
.head(10) | |
photos_by_tag.plot(x='tag', y='photos', kind='bar', | |
legend=False, title='Popular tags'); plt.tight_layout() | |
popular_tags = photos_by_tag.head(5).tag | |
popular_tagged = tagged_photos[tagged_photos.tag.isin(popular_tags)] | |
not_popular_tagged = tagged_photos[~tagged_photos.tag.isin(popular_tags)].assign( | |
tag='other') | |
by_tag_city = popular_tagged \ | |
.append(not_popular_tagged) \ | |
.groupby(by=['city', 'tag']) \ | |
.count()['name'] \ | |
.unstack(fill_value=0) | |
by_tag_city.plot(kind='bar', stacked=True) | |
plt.tight_layout() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment