Created
August 24, 2015 18:03
-
-
Save odashi/0d6e259abcc14f2d2d28 to your computer and use it in GitHub Desktop.
ChainerによるRNN言語モデルの学習器
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python3 | |
# RNNLM trainer | |
# date: 2015-8-25 | |
# author: @odashi_t | |
import datetime | |
import sys | |
import math | |
import numpy as np | |
from argparse import ArgumentParser | |
from collections import defaultdict | |
from chainer import FunctionSet, Variable, cuda, functions, optimizers | |
def trace(text): | |
print(datetime.datetime.now(), '...', text, file=sys.stderr) | |
def make_var(array, dtype=np.float32): | |
#return Variable(np.array(array, dtype=dtype)) | |
return Variable(cuda.to_gpu(np.array(array, dtype=dtype))) | |
def get_data(variable): | |
#return variable.data | |
return cuda.to_cpu(variable.data) | |
def zeros(shape, dtype=np.float32): | |
#return Variable(np.zeros(shape, dtype=dtype)) | |
return Variable(cuda.zeros(shape, dtype=dtype)) | |
def make_model(**kwargs): | |
#return FunctionSet(**kwargs) | |
return FunctionSet(**kwargs).to_gpu() | |
def make_vocab(filename, vocab_size): | |
word_freq = defaultdict(lambda: 0) | |
num_lines = 0 | |
num_words = 0 | |
with open(filename) as fp: | |
for line in fp: | |
words = line.split() | |
num_lines += 1 | |
num_words += len(words) | |
for word in words: | |
word_freq[word] += 1 | |
# 0: unk | |
# 1: <s> | |
# 2: </s> | |
vocab = defaultdict(lambda: 0) | |
vocab['<s>'] = 1 | |
vocab['</s>'] = 2 | |
for i,(k,v) in zip(range(vocab_size - 3), sorted(word_freq.items(), key=lambda x: -x[1])): | |
vocab[k] = i + 3 | |
return vocab, num_lines, num_words | |
def generate_batch(filename, batch_size): | |
with open(filename) as fp: | |
batch = [] | |
try: | |
while True: | |
for i in range(batch_size): | |
batch.append(next(fp).split()) | |
max_len = max(len(x) for x in batch) | |
batch = [['<s>'] + x + ['</s>'] * (max_len - len(x) + 1) for x in batch] | |
yield batch | |
batch = [] | |
except: | |
pass | |
if batch: | |
max_len = max(len(x) for x in batch) | |
batch = [['<s>'] + x + ['</s>'] * (max_len - len(x) + 1) for x in batch] | |
yield batch | |
def make_rnnlm_model(n_vocab, n_embed, n_hidden): | |
return make_model( | |
w_xe = functions.EmbedID(n_vocab, n_embed), | |
w_eh = functions.Linear(n_embed, n_hidden), | |
w_hh = functions.Linear(n_hidden, n_hidden), | |
w_hy = functions.Linear(n_hidden, n_vocab), | |
) | |
def save_rnnlm_model(filename, n_vocab, n_embed, n_hidden, vocab, model): | |
fmt = '%.8e' | |
dlm = ' ' | |
model.to_cpu() | |
with open(filename, 'w') as fp: | |
print(n_vocab, file=fp) | |
print(n_embed, file=fp) | |
print(n_hidden, file=fp) | |
for k, v in vocab.items(): | |
if v == 0: | |
continue | |
print('%s %d' % (k, v), file=fp) | |
for row in model.w_xe.W: | |
print(dlm.join(fmt % x for x in row), file=fp) | |
for row in model.w_eh.W: | |
print(dlm.join(fmt % x for x in row), file=fp) | |
print(dlm.join(fmt % x for x in model.w_eh.b), file=fp) | |
for row in model.w_hh.W: | |
print(dlm.join(fmt % x for x in row), file=fp) | |
print(dlm.join(fmt % x for x in model.w_hh.b), file=fp) | |
for row in model.w_hy.W: | |
print(dlm.join(fmt % x for x in row), file=fp) | |
print(dlm.join(fmt % x for x in model.w_hy.b), file=fp) | |
model.to_gpu() | |
def parse_args(): | |
def_vocab = 40000 | |
def_embed = 200 | |
def_hidden = 200 | |
def_epoch = 10 | |
def_minibatch = 256 | |
p = ArgumentParser(description='RNNLM trainer') | |
p.add_argument('corpus', help='[in] training corpus') | |
p.add_argument('model', help='[out] model file') | |
p.add_argument('-V', '--vocab', default=def_vocab, metavar='INT', type=int, | |
help='vocabulary size (default: %d)' % def_vocab) | |
p.add_argument('-E', '--embed', default=def_embed, metavar='INT', type=int, | |
help='embedding layer size (default: %d)' % def_embed) | |
p.add_argument('-H', '--hidden', default=def_hidden, metavar='INT', type=int, | |
help='hidden layer size (default: %d)' % def_hidden) | |
p.add_argument('-I', '--epoch', default=def_epoch, metavar='INT', type=int, | |
help='number of training epoch (default: %d)' % def_epoch) | |
p.add_argument('-B', '--minibatch', default=def_minibatch, metavar='INT', type=int, | |
help='minibatch size (default: %d)' % def_minibatch) | |
args = p.parse_args() | |
# check args | |
try: | |
if (args.vocab < 1): raise ValueError('you must set --vocab >= 1') | |
if (args.embed < 1): raise ValueError('you must set --embed >= 1') | |
if (args.hidden < 1): raise ValueError('you must set --hidden >= 1') | |
if (args.epoch < 1): raise ValueError('you must set --epoch >= 1') | |
if (args.minibatch < 1): raise ValueError('you must set --minibatch >= 1') | |
except Exception as ex: | |
p.print_usage(file=sys.stderr) | |
print(ex, file=sys.stderr) | |
sys.exit() | |
return args | |
def main(): | |
args = parse_args() | |
trace('making vocaburary ...') | |
vocab, num_lines, num_words = make_vocab(args.corpus, args.vocab) | |
trace('initializing CUDA ...') | |
cuda.init() | |
trace('start training ...') | |
model = make_rnnlm_model(args.vocab, args.embed, args.hidden) | |
for epoch in range(args.epoch): | |
trace('epoch %d/%d: ' % (epoch + 1, args.epoch)) | |
log_ppl = 0.0 | |
trained = 0 | |
opt = optimizers.SGD() | |
opt.setup(model) | |
for batch in generate_batch(args.corpus, args.minibatch): | |
batch = [[vocab[x] for x in words] for words in batch] | |
K = len(batch) | |
L = len(batch[0]) - 1 | |
opt.zero_grads() | |
s_h = zeros((K, args.hidden)) | |
for l in range(L): | |
s_x = make_var([batch[k][l] for k in range(K)], dtype=np.int32) | |
s_t = make_var([batch[k][l + 1] for k in range(K)], dtype=np.int32) | |
s_e = functions.sigmoid(model.w_xe(s_x)) | |
s_h = functions.sigmoid(model.w_eh(s_e) + model.w_hh(s_h)) | |
s_y = model.w_hy(s_h) | |
loss = functions.softmax_cross_entropy(s_y, s_t) | |
loss.backward() | |
log_ppl += get_data(loss).reshape(()) * K | |
opt.update() | |
trained += K | |
trace(' %d/%d' % (trained, num_lines)) | |
log_ppl /= float(num_words) | |
trace(' log(PPL) = %.10f' % log_ppl) | |
trace(' PPL = %.10f' % math.exp(log_ppl)) | |
trace(' writing model ...') | |
save_rnnlm_model(args.model + '.%d' % (epoch + 1), args.vocab, args.embed, args.hidden, vocab, model) | |
trace('training finished.') | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment