Created
July 11, 2018 23:44
-
-
Save olooney/8607faf1ee609b7c4da26f41f766a977 to your computer and use it in GitHub Desktop.
Python 3 conversion of a Python 2 implementation of Knuth's "algorithm u" I found online
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Knuth's algorithm to partition ns into m sets. | |
# https://codereview.stackexchange.com/questions/1526/finding-all-k-subset-partitions | |
# http://cs.utsa.edu/~wagner/knuth/ | |
# http://cs.utsa.edu/~wagner/knuth/fasc3b.pdf | |
# ns must be a list of integers | |
# m must be an integer less than len(ns) | |
# this is a generator expression | |
def algorithm_u(ns, m): | |
def visit(n, a): | |
ps = [[] for i in range(m)] | |
for j in range(n): | |
ps[a[j + 1]].append(ns[j]) | |
return ps | |
def f(mu, nu, sigma, n, a): | |
if mu == 2: | |
yield visit(n, a) | |
else: | |
for v in f(mu - 1, nu - 1, (mu + sigma) % 2, n, a): | |
yield v | |
if nu == mu + 1: | |
a[mu] = mu - 1 | |
yield visit(n, a) | |
while a[nu] > 0: | |
a[nu] = a[nu] - 1 | |
yield visit(n, a) | |
elif nu > mu + 1: | |
if (mu + sigma) % 2 == 1: | |
a[nu - 1] = mu - 1 | |
else: | |
a[mu] = mu - 1 | |
if (a[nu] + sigma) % 2 == 1: | |
for v in b(mu, nu - 1, 0, n, a): | |
yield v | |
else: | |
for v in f(mu, nu - 1, 0, n, a): | |
yield v | |
while a[nu] > 0: | |
a[nu] = a[nu] - 1 | |
if (a[nu] + sigma) % 2 == 1: | |
for v in b(mu, nu - 1, 0, n, a): | |
yield v | |
else: | |
for v in f(mu, nu - 1, 0, n, a): | |
yield v | |
def b(mu, nu, sigma, n, a): | |
if nu == mu + 1: | |
while a[nu] < mu - 1: | |
yield visit(n, a) | |
a[nu] = a[nu] + 1 | |
yield visit(n, a) | |
a[mu] = 0 | |
elif nu > mu + 1: | |
if (a[nu] + sigma) % 2 == 1: | |
for v in f(mu, nu - 1, 0, n, a): | |
yield v | |
else: | |
for v in b(mu, nu - 1, 0, n, a): | |
yield v | |
while a[nu] < mu - 1: | |
a[nu] = a[nu] + 1 | |
if (a[nu] + sigma) % 2 == 1: | |
for v in f(mu, nu - 1, 0, n, a): | |
yield v | |
else: | |
for v in b(mu, nu - 1, 0, n, a): | |
yield v | |
if (mu + sigma) % 2 == 1: | |
a[nu - 1] = 0 | |
else: | |
a[mu] = 0 | |
if mu == 2: | |
yield visit(n, a) | |
else: | |
for v in b(mu - 1, nu - 1, (mu + sigma) % 2, n, a): | |
yield v | |
n = len(ns) | |
a = [0] * (n + 1) | |
for j in range(1, m + 1): | |
a[n - m + j] = j - 1 | |
return f(m, n, 0, n, a) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment