Skip to content

Instantly share code, notes, and snippets.

@oscasierra
Last active November 15, 2017 11:42
Keras mnist sample 1
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, InputLayer
from keras.optimizers import RMSprop
# MNISTデータを読込む
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# MNISTデータを加工する
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# モデルの構築
model = Sequential()
model.add(InputLayer(input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
# 学習
epochs = 20
batch_size = 128
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
# 検証
score = model.evaluate(x_test, y_test, verbose=1)
print()
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment