Skip to content

Instantly share code, notes, and snippets.

@oschonrock
Last active January 8, 2020 21:50
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save oschonrock/6ee9ff225f0805d82e31351c6204c8d3 to your computer and use it in GitHub Desktop.
Save oschonrock/6ee9ff225f0805d82e31351c6204c8d3 to your computer and use it in GitHub Desktop.
High performance txt file parsing
// START include/flat_hash_map/flat_hash_map.hpp
// Copyright Malte Skarupke 2017.
// Distributed under the Boost Software License, Version 1.0.
// (See http://www.boost.org/LICENSE_1_0.txt)
#include <cstdint>
#include <cstddef>
#include <functional>
#include <cmath>
#include <algorithm>
#include <iterator>
#include <utility>
#include <type_traits>
#ifdef _MSC_VER
#define SKA_NOINLINE(...) __declspec(noinline) __VA_ARGS__
#else
#define SKA_NOINLINE(...) __VA_ARGS__ __attribute__((noinline))
#endif
namespace ska
{
struct prime_number_hash_policy;
struct power_of_two_hash_policy;
struct fibonacci_hash_policy;
namespace detailv3
{
template<typename Result, typename Functor>
struct functor_storage : Functor
{
functor_storage() = default;
functor_storage(const Functor & functor)
: Functor(functor)
{
}
template<typename... Args>
Result operator()(Args &&... args)
{
return static_cast<Functor &>(*this)(std::forward<Args>(args)...);
}
template<typename... Args>
Result operator()(Args &&... args) const
{
return static_cast<const Functor &>(*this)(std::forward<Args>(args)...);
}
};
template<typename Result, typename... Args>
struct functor_storage<Result, Result (*)(Args...)>
{
typedef Result (*function_ptr)(Args...);
function_ptr function;
functor_storage(function_ptr function)
: function(function)
{
}
Result operator()(Args... args) const
{
return function(std::forward<Args>(args)...);
}
operator function_ptr &()
{
return function;
}
operator const function_ptr &()
{
return function;
}
};
template<typename key_type, typename value_type, typename hasher>
struct KeyOrValueHasher : functor_storage<size_t, hasher>
{
typedef functor_storage<size_t, hasher> hasher_storage;
KeyOrValueHasher() = default;
KeyOrValueHasher(const hasher & hash)
: hasher_storage(hash)
{
}
size_t operator()(const key_type & key)
{
return static_cast<hasher_storage &>(*this)(key);
}
size_t operator()(const key_type & key) const
{
return static_cast<const hasher_storage &>(*this)(key);
}
size_t operator()(const value_type & value)
{
return static_cast<hasher_storage &>(*this)(value.first);
}
size_t operator()(const value_type & value) const
{
return static_cast<const hasher_storage &>(*this)(value.first);
}
template<typename F, typename S>
size_t operator()(const std::pair<F, S> & value)
{
return static_cast<hasher_storage &>(*this)(value.first);
}
template<typename F, typename S>
size_t operator()(const std::pair<F, S> & value) const
{
return static_cast<const hasher_storage &>(*this)(value.first);
}
};
template<typename key_type, typename value_type, typename key_equal>
struct KeyOrValueEquality : functor_storage<bool, key_equal>
{
typedef functor_storage<bool, key_equal> equality_storage;
KeyOrValueEquality() = default;
KeyOrValueEquality(const key_equal & equality)
: equality_storage(equality)
{
}
bool operator()(const key_type & lhs, const key_type & rhs)
{
return static_cast<equality_storage &>(*this)(lhs, rhs);
}
bool operator()(const key_type & lhs, const value_type & rhs)
{
return static_cast<equality_storage &>(*this)(lhs, rhs.first);
}
bool operator()(const value_type & lhs, const key_type & rhs)
{
return static_cast<equality_storage &>(*this)(lhs.first, rhs);
}
bool operator()(const value_type & lhs, const value_type & rhs)
{
return static_cast<equality_storage &>(*this)(lhs.first, rhs.first);
}
template<typename F, typename S>
bool operator()(const key_type & lhs, const std::pair<F, S> & rhs)
{
return static_cast<equality_storage &>(*this)(lhs, rhs.first);
}
template<typename F, typename S>
bool operator()(const std::pair<F, S> & lhs, const key_type & rhs)
{
return static_cast<equality_storage &>(*this)(lhs.first, rhs);
}
template<typename F, typename S>
bool operator()(const value_type & lhs, const std::pair<F, S> & rhs)
{
return static_cast<equality_storage &>(*this)(lhs.first, rhs.first);
}
template<typename F, typename S>
bool operator()(const std::pair<F, S> & lhs, const value_type & rhs)
{
return static_cast<equality_storage &>(*this)(lhs.first, rhs.first);
}
template<typename FL, typename SL, typename FR, typename SR>
bool operator()(const std::pair<FL, SL> & lhs, const std::pair<FR, SR> & rhs)
{
return static_cast<equality_storage &>(*this)(lhs.first, rhs.first);
}
};
static constexpr int8_t min_lookups = 4;
template<typename T>
struct sherwood_v3_entry
{
sherwood_v3_entry()
{
}
sherwood_v3_entry(int8_t distance_from_desired)
: distance_from_desired(distance_from_desired)
{
}
~sherwood_v3_entry()
{
}
static sherwood_v3_entry * empty_default_table()
{
static sherwood_v3_entry result[min_lookups] = { {}, {}, {}, {special_end_value} };
return result;
}
bool has_value() const
{
return distance_from_desired >= 0;
}
bool is_empty() const
{
return distance_from_desired < 0;
}
bool is_at_desired_position() const
{
return distance_from_desired <= 0;
}
template<typename... Args>
void emplace(int8_t distance, Args &&... args)
{
new (std::addressof(value)) T(std::forward<Args>(args)...);
distance_from_desired = distance;
}
void destroy_value()
{
value.~T();
distance_from_desired = -1;
}
int8_t distance_from_desired = -1;
static constexpr int8_t special_end_value = 0;
union { T value; };
};
inline int8_t log2(size_t value)
{
static constexpr int8_t table[64] =
{
63, 0, 58, 1, 59, 47, 53, 2,
60, 39, 48, 27, 54, 33, 42, 3,
61, 51, 37, 40, 49, 18, 28, 20,
55, 30, 34, 11, 43, 14, 22, 4,
62, 57, 46, 52, 38, 26, 32, 41,
50, 36, 17, 19, 29, 10, 13, 21,
56, 45, 25, 31, 35, 16, 9, 12,
44, 24, 15, 8, 23, 7, 6, 5
};
value |= value >> 1;
value |= value >> 2;
value |= value >> 4;
value |= value >> 8;
value |= value >> 16;
value |= value >> 32;
return table[((value - (value >> 1)) * 0x07EDD5E59A4E28C2) >> 58];
}
template<typename T, bool>
struct AssignIfTrue
{
void operator()(T & lhs, const T & rhs)
{
lhs = rhs;
}
void operator()(T & lhs, T && rhs)
{
lhs = std::move(rhs);
}
};
template<typename T>
struct AssignIfTrue<T, false>
{
void operator()(T &, const T &)
{
}
void operator()(T &, T &&)
{
}
};
inline size_t next_power_of_two(size_t i)
{
--i;
i |= i >> 1;
i |= i >> 2;
i |= i >> 4;
i |= i >> 8;
i |= i >> 16;
i |= i >> 32;
++i;
return i;
}
template<typename...> using void_t = void;
template<typename T, typename = void>
struct HashPolicySelector
{
typedef fibonacci_hash_policy type;
};
template<typename T>
struct HashPolicySelector<T, void_t<typename T::hash_policy>>
{
typedef typename T::hash_policy type;
};
template<typename T, typename FindKey, typename ArgumentHash, typename Hasher, typename ArgumentEqual, typename Equal, typename ArgumentAlloc, typename EntryAlloc>
class sherwood_v3_table : private EntryAlloc, private Hasher, private Equal
{
using Entry = detailv3::sherwood_v3_entry<T>;
using AllocatorTraits = std::allocator_traits<EntryAlloc>;
using EntryPointer = typename AllocatorTraits::pointer;
struct convertible_to_iterator;
public:
using value_type = T;
using size_type = size_t;
using difference_type = std::ptrdiff_t;
using hasher = ArgumentHash;
using key_equal = ArgumentEqual;
using allocator_type = EntryAlloc;
using reference = value_type &;
using const_reference = const value_type &;
using pointer = value_type *;
using const_pointer = const value_type *;
sherwood_v3_table()
{
}
explicit sherwood_v3_table(size_type bucket_count, const ArgumentHash & hash = ArgumentHash(), const ArgumentEqual & equal = ArgumentEqual(), const ArgumentAlloc & alloc = ArgumentAlloc())
: EntryAlloc(alloc), Hasher(hash), Equal(equal)
{
rehash(bucket_count);
}
sherwood_v3_table(size_type bucket_count, const ArgumentAlloc & alloc)
: sherwood_v3_table(bucket_count, ArgumentHash(), ArgumentEqual(), alloc)
{
}
sherwood_v3_table(size_type bucket_count, const ArgumentHash & hash, const ArgumentAlloc & alloc)
: sherwood_v3_table(bucket_count, hash, ArgumentEqual(), alloc)
{
}
explicit sherwood_v3_table(const ArgumentAlloc & alloc)
: EntryAlloc(alloc)
{
}
template<typename It>
sherwood_v3_table(It first, It last, size_type bucket_count = 0, const ArgumentHash & hash = ArgumentHash(), const ArgumentEqual & equal = ArgumentEqual(), const ArgumentAlloc & alloc = ArgumentAlloc())
: sherwood_v3_table(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<typename It>
sherwood_v3_table(It first, It last, size_type bucket_count, const ArgumentAlloc & alloc)
: sherwood_v3_table(first, last, bucket_count, ArgumentHash(), ArgumentEqual(), alloc)
{
}
template<typename It>
sherwood_v3_table(It first, It last, size_type bucket_count, const ArgumentHash & hash, const ArgumentAlloc & alloc)
: sherwood_v3_table(first, last, bucket_count, hash, ArgumentEqual(), alloc)
{
}
sherwood_v3_table(std::initializer_list<T> il, size_type bucket_count = 0, const ArgumentHash & hash = ArgumentHash(), const ArgumentEqual & equal = ArgumentEqual(), const ArgumentAlloc & alloc = ArgumentAlloc())
: sherwood_v3_table(bucket_count, hash, equal, alloc)
{
if (bucket_count == 0)
rehash(il.size());
insert(il.begin(), il.end());
}
sherwood_v3_table(std::initializer_list<T> il, size_type bucket_count, const ArgumentAlloc & alloc)
: sherwood_v3_table(il, bucket_count, ArgumentHash(), ArgumentEqual(), alloc)
{
}
sherwood_v3_table(std::initializer_list<T> il, size_type bucket_count, const ArgumentHash & hash, const ArgumentAlloc & alloc)
: sherwood_v3_table(il, bucket_count, hash, ArgumentEqual(), alloc)
{
}
sherwood_v3_table(const sherwood_v3_table & other)
: sherwood_v3_table(other, AllocatorTraits::select_on_container_copy_construction(other.get_allocator()))
{
}
sherwood_v3_table(const sherwood_v3_table & other, const ArgumentAlloc & alloc)
: EntryAlloc(alloc), Hasher(other), Equal(other), _max_load_factor(other._max_load_factor)
{
rehash_for_other_container(other);
try
{
insert(other.begin(), other.end());
}
catch(...)
{
clear();
deallocate_data(entries, num_slots_minus_one, max_lookups);
throw;
}
}
sherwood_v3_table(sherwood_v3_table && other) noexcept
: EntryAlloc(std::move(other)), Hasher(std::move(other)), Equal(std::move(other))
{
swap_pointers(other);
}
sherwood_v3_table(sherwood_v3_table && other, const ArgumentAlloc & alloc) noexcept
: EntryAlloc(alloc), Hasher(std::move(other)), Equal(std::move(other))
{
swap_pointers(other);
}
sherwood_v3_table & operator=(const sherwood_v3_table & other)
{
if (this == std::addressof(other))
return *this;
clear();
if (AllocatorTraits::propagate_on_container_copy_assignment::value)
{
if (static_cast<EntryAlloc &>(*this) != static_cast<const EntryAlloc &>(other))
{
reset_to_empty_state();
}
AssignIfTrue<EntryAlloc, AllocatorTraits::propagate_on_container_copy_assignment::value>()(*this, other);
}
_max_load_factor = other._max_load_factor;
static_cast<Hasher &>(*this) = other;
static_cast<Equal &>(*this) = other;
rehash_for_other_container(other);
insert(other.begin(), other.end());
return *this;
}
sherwood_v3_table & operator=(sherwood_v3_table && other) noexcept
{
if (this == std::addressof(other))
return *this;
else if (AllocatorTraits::propagate_on_container_move_assignment::value)
{
clear();
reset_to_empty_state();
AssignIfTrue<EntryAlloc, AllocatorTraits::propagate_on_container_move_assignment::value>()(*this, std::move(other));
swap_pointers(other);
}
else if (static_cast<EntryAlloc &>(*this) == static_cast<EntryAlloc &>(other))
{
swap_pointers(other);
}
else
{
clear();
_max_load_factor = other._max_load_factor;
rehash_for_other_container(other);
for (T & elem : other)
emplace(std::move(elem));
other.clear();
}
static_cast<Hasher &>(*this) = std::move(other);
static_cast<Equal &>(*this) = std::move(other);
return *this;
}
~sherwood_v3_table()
{
clear();
deallocate_data(entries, num_slots_minus_one, max_lookups);
}
const allocator_type & get_allocator() const
{
return static_cast<const allocator_type &>(*this);
}
const ArgumentEqual & key_eq() const
{
return static_cast<const ArgumentEqual &>(*this);
}
const ArgumentHash & hash_function() const
{
return static_cast<const ArgumentHash &>(*this);
}
template<typename ValueType>
struct templated_iterator
{
templated_iterator() = default;
templated_iterator(EntryPointer current)
: current(current)
{
}
EntryPointer current = EntryPointer();
using iterator_category = std::forward_iterator_tag;
using value_type = ValueType;
using difference_type = ptrdiff_t;
using pointer = ValueType *;
using reference = ValueType &;
friend bool operator==(const templated_iterator & lhs, const templated_iterator & rhs)
{
return lhs.current == rhs.current;
}
friend bool operator!=(const templated_iterator & lhs, const templated_iterator & rhs)
{
return !(lhs == rhs);
}
templated_iterator & operator++()
{
do
{
++current;
}
while(current->is_empty());
return *this;
}
templated_iterator operator++(int)
{
templated_iterator copy(*this);
++*this;
return copy;
}
ValueType & operator*() const
{
return current->value;
}
ValueType * operator->() const
{
return std::addressof(current->value);
}
operator templated_iterator<const value_type>() const
{
return { current };
}
};
using iterator = templated_iterator<value_type>;
using const_iterator = templated_iterator<const value_type>;
iterator begin()
{
for (EntryPointer it = entries;; ++it)
{
if (it->has_value())
return { it };
}
}
const_iterator begin() const
{
for (EntryPointer it = entries;; ++it)
{
if (it->has_value())
return { it };
}
}
const_iterator cbegin() const
{
return begin();
}
iterator end()
{
return { entries + static_cast<ptrdiff_t>(num_slots_minus_one + max_lookups) };
}
const_iterator end() const
{
return { entries + static_cast<ptrdiff_t>(num_slots_minus_one + max_lookups) };
}
const_iterator cend() const
{
return end();
}
iterator find(const FindKey & key)
{
size_t index = hash_policy.index_for_hash(hash_object(key), num_slots_minus_one);
EntryPointer it = entries + ptrdiff_t(index);
for (int8_t distance = 0; it->distance_from_desired >= distance; ++distance, ++it)
{
if (compares_equal(key, it->value))
return { it };
}
return end();
}
const_iterator find(const FindKey & key) const
{
return const_cast<sherwood_v3_table *>(this)->find(key);
}
size_t count(const FindKey & key) const
{
return find(key) == end() ? 0 : 1;
}
std::pair<iterator, iterator> equal_range(const FindKey & key)
{
iterator found = find(key);
if (found == end())
return { found, found };
else
return { found, std::next(found) };
}
std::pair<const_iterator, const_iterator> equal_range(const FindKey & key) const
{
const_iterator found = find(key);
if (found == end())
return { found, found };
else
return { found, std::next(found) };
}
template<typename Key, typename... Args>
std::pair<iterator, bool> emplace(Key && key, Args &&... args)
{
size_t index = hash_policy.index_for_hash(hash_object(key), num_slots_minus_one);
EntryPointer current_entry = entries + ptrdiff_t(index);
int8_t distance_from_desired = 0;
for (; current_entry->distance_from_desired >= distance_from_desired; ++current_entry, ++distance_from_desired)
{
if (compares_equal(key, current_entry->value))
return { { current_entry }, false };
}
return emplace_new_key(distance_from_desired, current_entry, std::forward<Key>(key), std::forward<Args>(args)...);
}
std::pair<iterator, bool> insert(const value_type & value)
{
return emplace(value);
}
std::pair<iterator, bool> insert(value_type && value)
{
return emplace(std::move(value));
}
template<typename... Args>
iterator emplace_hint(const_iterator, Args &&... args)
{
return emplace(std::forward<Args>(args)...).first;
}
iterator insert(const_iterator, const value_type & value)
{
return emplace(value).first;
}
iterator insert(const_iterator, value_type && value)
{
return emplace(std::move(value)).first;
}
template<typename It>
void insert(It begin, It end)
{
for (; begin != end; ++begin)
{
emplace(*begin);
}
}
void insert(std::initializer_list<value_type> il)
{
insert(il.begin(), il.end());
}
void rehash(size_t num_buckets)
{
num_buckets = std::max(num_buckets, static_cast<size_t>(std::ceil(num_elements / static_cast<double>(_max_load_factor))));
if (num_buckets == 0)
{
reset_to_empty_state();
return;
}
auto new_prime_index = hash_policy.next_size_over(num_buckets);
if (num_buckets == bucket_count())
return;
int8_t new_max_lookups = compute_max_lookups(num_buckets);
EntryPointer new_buckets(AllocatorTraits::allocate(*this, num_buckets + new_max_lookups));
EntryPointer special_end_item = new_buckets + static_cast<ptrdiff_t>(num_buckets + new_max_lookups - 1);
for (EntryPointer it = new_buckets; it != special_end_item; ++it)
it->distance_from_desired = -1;
special_end_item->distance_from_desired = Entry::special_end_value;
std::swap(entries, new_buckets);
std::swap(num_slots_minus_one, num_buckets);
--num_slots_minus_one;
hash_policy.commit(new_prime_index);
int8_t old_max_lookups = max_lookups;
max_lookups = new_max_lookups;
num_elements = 0;
for (EntryPointer it = new_buckets, end = it + static_cast<ptrdiff_t>(num_buckets + old_max_lookups); it != end; ++it)
{
if (it->has_value())
{
emplace(std::move(it->value));
it->destroy_value();
}
}
deallocate_data(new_buckets, num_buckets, old_max_lookups);
}
void reserve(size_t num_elements)
{
size_t required_buckets = num_buckets_for_reserve(num_elements);
if (required_buckets > bucket_count())
rehash(required_buckets);
}
// the return value is a type that can be converted to an iterator
// the reason for doing this is that it's not free to find the
// iterator pointing at the next element. if you care about the
// next iterator, turn the return value into an iterator
convertible_to_iterator erase(const_iterator to_erase)
{
EntryPointer current = to_erase.current;
current->destroy_value();
--num_elements;
for (EntryPointer next = current + ptrdiff_t(1); !next->is_at_desired_position(); ++current, ++next)
{
current->emplace(next->distance_from_desired - 1, std::move(next->value));
next->destroy_value();
}
return { to_erase.current };
}
iterator erase(const_iterator begin_it, const_iterator end_it)
{
if (begin_it == end_it)
return { begin_it.current };
for (EntryPointer it = begin_it.current, end = end_it.current; it != end; ++it)
{
if (it->has_value())
{
it->destroy_value();
--num_elements;
}
}
if (end_it == this->end())
return this->end();
ptrdiff_t num_to_move = std::min(static_cast<ptrdiff_t>(end_it.current->distance_from_desired), end_it.current - begin_it.current);
EntryPointer to_return = end_it.current - num_to_move;
for (EntryPointer it = end_it.current; !it->is_at_desired_position();)
{
EntryPointer target = it - num_to_move;
target->emplace(it->distance_from_desired - num_to_move, std::move(it->value));
it->destroy_value();
++it;
num_to_move = std::min(static_cast<ptrdiff_t>(it->distance_from_desired), num_to_move);
}
return { to_return };
}
size_t erase(const FindKey & key)
{
auto found = find(key);
if (found == end())
return 0;
else
{
erase(found);
return 1;
}
}
void clear()
{
for (EntryPointer it = entries, end = it + static_cast<ptrdiff_t>(num_slots_minus_one + max_lookups); it != end; ++it)
{
if (it->has_value())
it->destroy_value();
}
num_elements = 0;
}
void shrink_to_fit()
{
rehash_for_other_container(*this);
}
void swap(sherwood_v3_table & other)
{
using std::swap;
swap_pointers(other);
swap(static_cast<ArgumentHash &>(*this), static_cast<ArgumentHash &>(other));
swap(static_cast<ArgumentEqual &>(*this), static_cast<ArgumentEqual &>(other));
if (AllocatorTraits::propagate_on_container_swap::value)
swap(static_cast<EntryAlloc &>(*this), static_cast<EntryAlloc &>(other));
}
size_t size() const
{
return num_elements;
}
size_t max_size() const
{
return (AllocatorTraits::max_size(*this)) / sizeof(Entry);
}
size_t bucket_count() const
{
return num_slots_minus_one ? num_slots_minus_one + 1 : 0;
}
size_type max_bucket_count() const
{
return (AllocatorTraits::max_size(*this) - min_lookups) / sizeof(Entry);
}
size_t bucket(const FindKey & key) const
{
return hash_policy.index_for_hash(hash_object(key), num_slots_minus_one);
}
float load_factor() const
{
size_t buckets = bucket_count();
if (buckets)
return static_cast<float>(num_elements) / bucket_count();
else
return 0;
}
void max_load_factor(float value)
{
_max_load_factor = value;
}
float max_load_factor() const
{
return _max_load_factor;
}
bool empty() const
{
return num_elements == 0;
}
private:
EntryPointer entries = Entry::empty_default_table();
size_t num_slots_minus_one = 0;
typename HashPolicySelector<ArgumentHash>::type hash_policy;
int8_t max_lookups = detailv3::min_lookups - 1;
float _max_load_factor = 0.5f;
size_t num_elements = 0;
static int8_t compute_max_lookups(size_t num_buckets)
{
int8_t desired = detailv3::log2(num_buckets);
return std::max(detailv3::min_lookups, desired);
}
size_t num_buckets_for_reserve(size_t num_elements) const
{
return static_cast<size_t>(std::ceil(num_elements / std::min(0.5, static_cast<double>(_max_load_factor))));
}
void rehash_for_other_container(const sherwood_v3_table & other)
{
rehash(std::min(num_buckets_for_reserve(other.size()), other.bucket_count()));
}
void swap_pointers(sherwood_v3_table & other)
{
using std::swap;
swap(hash_policy, other.hash_policy);
swap(entries, other.entries);
swap(num_slots_minus_one, other.num_slots_minus_one);
swap(num_elements, other.num_elements);
swap(max_lookups, other.max_lookups);
swap(_max_load_factor, other._max_load_factor);
}
template<typename Key, typename... Args>
SKA_NOINLINE(std::pair<iterator, bool>) emplace_new_key(int8_t distance_from_desired, EntryPointer current_entry, Key && key, Args &&... args)
{
using std::swap;
if (num_slots_minus_one == 0 || distance_from_desired == max_lookups || num_elements + 1 > (num_slots_minus_one + 1) * static_cast<double>(_max_load_factor))
{
grow();
return emplace(std::forward<Key>(key), std::forward<Args>(args)...);
}
else if (current_entry->is_empty())
{
current_entry->emplace(distance_from_desired, std::forward<Key>(key), std::forward<Args>(args)...);
++num_elements;
return { { current_entry }, true };
}
value_type to_insert(std::forward<Key>(key), std::forward<Args>(args)...);
swap(distance_from_desired, current_entry->distance_from_desired);
swap(to_insert, current_entry->value);
iterator result = { current_entry };
for (++distance_from_desired, ++current_entry;; ++current_entry)
{
if (current_entry->is_empty())
{
current_entry->emplace(distance_from_desired, std::move(to_insert));
++num_elements;
return { result, true };
}
else if (current_entry->distance_from_desired < distance_from_desired)
{
swap(distance_from_desired, current_entry->distance_from_desired);
swap(to_insert, current_entry->value);
++distance_from_desired;
}
else
{
++distance_from_desired;
if (distance_from_desired == max_lookups)
{
swap(to_insert, result.current->value);
grow();
return emplace(std::move(to_insert));
}
}
}
}
void grow()
{
rehash(std::max(size_t(4), 2 * bucket_count()));
}
void deallocate_data(EntryPointer begin, size_t num_slots_minus_one, int8_t max_lookups)
{
if (begin != Entry::empty_default_table())
{
AllocatorTraits::deallocate(*this, begin, num_slots_minus_one + max_lookups + 1);
}
}
void reset_to_empty_state()
{
deallocate_data(entries, num_slots_minus_one, max_lookups);
entries = Entry::empty_default_table();
num_slots_minus_one = 0;
hash_policy.reset();
max_lookups = detailv3::min_lookups - 1;
}
template<typename U>
size_t hash_object(const U & key)
{
return static_cast<Hasher &>(*this)(key);
}
template<typename U>
size_t hash_object(const U & key) const
{
return static_cast<const Hasher &>(*this)(key);
}
template<typename L, typename R>
bool compares_equal(const L & lhs, const R & rhs)
{
return static_cast<Equal &>(*this)(lhs, rhs);
}
struct convertible_to_iterator
{
EntryPointer it;
operator iterator()
{
if (it->has_value())
return { it };
else
return ++iterator{it};
}
operator const_iterator()
{
if (it->has_value())
return { it };
else
return ++const_iterator{it};
}
};
};
}
struct prime_number_hash_policy
{
static size_t mod0(size_t) { return 0llu; }
static size_t mod2(size_t hash) { return hash % 2llu; }
static size_t mod3(size_t hash) { return hash % 3llu; }
static size_t mod5(size_t hash) { return hash % 5llu; }
static size_t mod7(size_t hash) { return hash % 7llu; }
static size_t mod11(size_t hash) { return hash % 11llu; }
static size_t mod13(size_t hash) { return hash % 13llu; }
static size_t mod17(size_t hash) { return hash % 17llu; }
static size_t mod23(size_t hash) { return hash % 23llu; }
static size_t mod29(size_t hash) { return hash % 29llu; }
static size_t mod37(size_t hash) { return hash % 37llu; }
static size_t mod47(size_t hash) { return hash % 47llu; }
static size_t mod59(size_t hash) { return hash % 59llu; }
static size_t mod73(size_t hash) { return hash % 73llu; }
static size_t mod97(size_t hash) { return hash % 97llu; }
static size_t mod127(size_t hash) { return hash % 127llu; }
static size_t mod151(size_t hash) { return hash % 151llu; }
static size_t mod197(size_t hash) { return hash % 197llu; }
static size_t mod251(size_t hash) { return hash % 251llu; }
static size_t mod313(size_t hash) { return hash % 313llu; }
static size_t mod397(size_t hash) { return hash % 397llu; }
static size_t mod499(size_t hash) { return hash % 499llu; }
static size_t mod631(size_t hash) { return hash % 631llu; }
static size_t mod797(size_t hash) { return hash % 797llu; }
static size_t mod1009(size_t hash) { return hash % 1009llu; }
static size_t mod1259(size_t hash) { return hash % 1259llu; }
static size_t mod1597(size_t hash) { return hash % 1597llu; }
static size_t mod2011(size_t hash) { return hash % 2011llu; }
static size_t mod2539(size_t hash) { return hash % 2539llu; }
static size_t mod3203(size_t hash) { return hash % 3203llu; }
static size_t mod4027(size_t hash) { return hash % 4027llu; }
static size_t mod5087(size_t hash) { return hash % 5087llu; }
static size_t mod6421(size_t hash) { return hash % 6421llu; }
static size_t mod8089(size_t hash) { return hash % 8089llu; }
static size_t mod10193(size_t hash) { return hash % 10193llu; }
static size_t mod12853(size_t hash) { return hash % 12853llu; }
static size_t mod16193(size_t hash) { return hash % 16193llu; }
static size_t mod20399(size_t hash) { return hash % 20399llu; }
static size_t mod25717(size_t hash) { return hash % 25717llu; }
static size_t mod32401(size_t hash) { return hash % 32401llu; }
static size_t mod40823(size_t hash) { return hash % 40823llu; }
static size_t mod51437(size_t hash) { return hash % 51437llu; }
static size_t mod64811(size_t hash) { return hash % 64811llu; }
static size_t mod81649(size_t hash) { return hash % 81649llu; }
static size_t mod102877(size_t hash) { return hash % 102877llu; }
static size_t mod129607(size_t hash) { return hash % 129607llu; }
static size_t mod163307(size_t hash) { return hash % 163307llu; }
static size_t mod205759(size_t hash) { return hash % 205759llu; }
static size_t mod259229(size_t hash) { return hash % 259229llu; }
static size_t mod326617(size_t hash) { return hash % 326617llu; }
static size_t mod411527(size_t hash) { return hash % 411527llu; }
static size_t mod518509(size_t hash) { return hash % 518509llu; }
static size_t mod653267(size_t hash) { return hash % 653267llu; }
static size_t mod823117(size_t hash) { return hash % 823117llu; }
static size_t mod1037059(size_t hash) { return hash % 1037059llu; }
static size_t mod1306601(size_t hash) { return hash % 1306601llu; }
static size_t mod1646237(size_t hash) { return hash % 1646237llu; }
static size_t mod2074129(size_t hash) { return hash % 2074129llu; }
static size_t mod2613229(size_t hash) { return hash % 2613229llu; }
static size_t mod3292489(size_t hash) { return hash % 3292489llu; }
static size_t mod4148279(size_t hash) { return hash % 4148279llu; }
static size_t mod5226491(size_t hash) { return hash % 5226491llu; }
static size_t mod6584983(size_t hash) { return hash % 6584983llu; }
static size_t mod8296553(size_t hash) { return hash % 8296553llu; }
static size_t mod10453007(size_t hash) { return hash % 10453007llu; }
static size_t mod13169977(size_t hash) { return hash % 13169977llu; }
static size_t mod16593127(size_t hash) { return hash % 16593127llu; }
static size_t mod20906033(size_t hash) { return hash % 20906033llu; }
static size_t mod26339969(size_t hash) { return hash % 26339969llu; }
static size_t mod33186281(size_t hash) { return hash % 33186281llu; }
static size_t mod41812097(size_t hash) { return hash % 41812097llu; }
static size_t mod52679969(size_t hash) { return hash % 52679969llu; }
static size_t mod66372617(size_t hash) { return hash % 66372617llu; }
static size_t mod83624237(size_t hash) { return hash % 83624237llu; }
static size_t mod105359939(size_t hash) { return hash % 105359939llu; }
static size_t mod132745199(size_t hash) { return hash % 132745199llu; }
static size_t mod167248483(size_t hash) { return hash % 167248483llu; }
static size_t mod210719881(size_t hash) { return hash % 210719881llu; }
static size_t mod265490441(size_t hash) { return hash % 265490441llu; }
static size_t mod334496971(size_t hash) { return hash % 334496971llu; }
static size_t mod421439783(size_t hash) { return hash % 421439783llu; }
static size_t mod530980861(size_t hash) { return hash % 530980861llu; }
static size_t mod668993977(size_t hash) { return hash % 668993977llu; }
static size_t mod842879579(size_t hash) { return hash % 842879579llu; }
static size_t mod1061961721(size_t hash) { return hash % 1061961721llu; }
static size_t mod1337987929(size_t hash) { return hash % 1337987929llu; }
static size_t mod1685759167(size_t hash) { return hash % 1685759167llu; }
static size_t mod2123923447(size_t hash) { return hash % 2123923447llu; }
static size_t mod2675975881(size_t hash) { return hash % 2675975881llu; }
static size_t mod3371518343(size_t hash) { return hash % 3371518343llu; }
static size_t mod4247846927(size_t hash) { return hash % 4247846927llu; }
static size_t mod5351951779(size_t hash) { return hash % 5351951779llu; }
static size_t mod6743036717(size_t hash) { return hash % 6743036717llu; }
static size_t mod8495693897(size_t hash) { return hash % 8495693897llu; }
static size_t mod10703903591(size_t hash) { return hash % 10703903591llu; }
static size_t mod13486073473(size_t hash) { return hash % 13486073473llu; }
static size_t mod16991387857(size_t hash) { return hash % 16991387857llu; }
static size_t mod21407807219(size_t hash) { return hash % 21407807219llu; }
static size_t mod26972146961(size_t hash) { return hash % 26972146961llu; }
static size_t mod33982775741(size_t hash) { return hash % 33982775741llu; }
static size_t mod42815614441(size_t hash) { return hash % 42815614441llu; }
static size_t mod53944293929(size_t hash) { return hash % 53944293929llu; }
static size_t mod67965551447(size_t hash) { return hash % 67965551447llu; }
static size_t mod85631228929(size_t hash) { return hash % 85631228929llu; }
static size_t mod107888587883(size_t hash) { return hash % 107888587883llu; }
static size_t mod135931102921(size_t hash) { return hash % 135931102921llu; }
static size_t mod171262457903(size_t hash) { return hash % 171262457903llu; }
static size_t mod215777175787(size_t hash) { return hash % 215777175787llu; }
static size_t mod271862205833(size_t hash) { return hash % 271862205833llu; }
static size_t mod342524915839(size_t hash) { return hash % 342524915839llu; }
static size_t mod431554351609(size_t hash) { return hash % 431554351609llu; }
static size_t mod543724411781(size_t hash) { return hash % 543724411781llu; }
static size_t mod685049831731(size_t hash) { return hash % 685049831731llu; }
static size_t mod863108703229(size_t hash) { return hash % 863108703229llu; }
static size_t mod1087448823553(size_t hash) { return hash % 1087448823553llu; }
static size_t mod1370099663459(size_t hash) { return hash % 1370099663459llu; }
static size_t mod1726217406467(size_t hash) { return hash % 1726217406467llu; }
static size_t mod2174897647073(size_t hash) { return hash % 2174897647073llu; }
static size_t mod2740199326961(size_t hash) { return hash % 2740199326961llu; }
static size_t mod3452434812973(size_t hash) { return hash % 3452434812973llu; }
static size_t mod4349795294267(size_t hash) { return hash % 4349795294267llu; }
static size_t mod5480398654009(size_t hash) { return hash % 5480398654009llu; }
static size_t mod6904869625999(size_t hash) { return hash % 6904869625999llu; }
static size_t mod8699590588571(size_t hash) { return hash % 8699590588571llu; }
static size_t mod10960797308051(size_t hash) { return hash % 10960797308051llu; }
static size_t mod13809739252051(size_t hash) { return hash % 13809739252051llu; }
static size_t mod17399181177241(size_t hash) { return hash % 17399181177241llu; }
static size_t mod21921594616111(size_t hash) { return hash % 21921594616111llu; }
static size_t mod27619478504183(size_t hash) { return hash % 27619478504183llu; }
static size_t mod34798362354533(size_t hash) { return hash % 34798362354533llu; }
static size_t mod43843189232363(size_t hash) { return hash % 43843189232363llu; }
static size_t mod55238957008387(size_t hash) { return hash % 55238957008387llu; }
static size_t mod69596724709081(size_t hash) { return hash % 69596724709081llu; }
static size_t mod87686378464759(size_t hash) { return hash % 87686378464759llu; }
static size_t mod110477914016779(size_t hash) { return hash % 110477914016779llu; }
static size_t mod139193449418173(size_t hash) { return hash % 139193449418173llu; }
static size_t mod175372756929481(size_t hash) { return hash % 175372756929481llu; }
static size_t mod220955828033581(size_t hash) { return hash % 220955828033581llu; }
static size_t mod278386898836457(size_t hash) { return hash % 278386898836457llu; }
static size_t mod350745513859007(size_t hash) { return hash % 350745513859007llu; }
static size_t mod441911656067171(size_t hash) { return hash % 441911656067171llu; }
static size_t mod556773797672909(size_t hash) { return hash % 556773797672909llu; }
static size_t mod701491027718027(size_t hash) { return hash % 701491027718027llu; }
static size_t mod883823312134381(size_t hash) { return hash % 883823312134381llu; }
static size_t mod1113547595345903(size_t hash) { return hash % 1113547595345903llu; }
static size_t mod1402982055436147(size_t hash) { return hash % 1402982055436147llu; }
static size_t mod1767646624268779(size_t hash) { return hash % 1767646624268779llu; }
static size_t mod2227095190691797(size_t hash) { return hash % 2227095190691797llu; }
static size_t mod2805964110872297(size_t hash) { return hash % 2805964110872297llu; }
static size_t mod3535293248537579(size_t hash) { return hash % 3535293248537579llu; }
static size_t mod4454190381383713(size_t hash) { return hash % 4454190381383713llu; }
static size_t mod5611928221744609(size_t hash) { return hash % 5611928221744609llu; }
static size_t mod7070586497075177(size_t hash) { return hash % 7070586497075177llu; }
static size_t mod8908380762767489(size_t hash) { return hash % 8908380762767489llu; }
static size_t mod11223856443489329(size_t hash) { return hash % 11223856443489329llu; }
static size_t mod14141172994150357(size_t hash) { return hash % 14141172994150357llu; }
static size_t mod17816761525534927(size_t hash) { return hash % 17816761525534927llu; }
static size_t mod22447712886978529(size_t hash) { return hash % 22447712886978529llu; }
static size_t mod28282345988300791(size_t hash) { return hash % 28282345988300791llu; }
static size_t mod35633523051069991(size_t hash) { return hash % 35633523051069991llu; }
static size_t mod44895425773957261(size_t hash) { return hash % 44895425773957261llu; }
static size_t mod56564691976601587(size_t hash) { return hash % 56564691976601587llu; }
static size_t mod71267046102139967(size_t hash) { return hash % 71267046102139967llu; }
static size_t mod89790851547914507(size_t hash) { return hash % 89790851547914507llu; }
static size_t mod113129383953203213(size_t hash) { return hash % 113129383953203213llu; }
static size_t mod142534092204280003(size_t hash) { return hash % 142534092204280003llu; }
static size_t mod179581703095829107(size_t hash) { return hash % 179581703095829107llu; }
static size_t mod226258767906406483(size_t hash) { return hash % 226258767906406483llu; }
static size_t mod285068184408560057(size_t hash) { return hash % 285068184408560057llu; }
static size_t mod359163406191658253(size_t hash) { return hash % 359163406191658253llu; }
static size_t mod452517535812813007(size_t hash) { return hash % 452517535812813007llu; }
static size_t mod570136368817120201(size_t hash) { return hash % 570136368817120201llu; }
static size_t mod718326812383316683(size_t hash) { return hash % 718326812383316683llu; }
static size_t mod905035071625626043(size_t hash) { return hash % 905035071625626043llu; }
static size_t mod1140272737634240411(size_t hash) { return hash % 1140272737634240411llu; }
static size_t mod1436653624766633509(size_t hash) { return hash % 1436653624766633509llu; }
static size_t mod1810070143251252131(size_t hash) { return hash % 1810070143251252131llu; }
static size_t mod2280545475268481167(size_t hash) { return hash % 2280545475268481167llu; }
static size_t mod2873307249533267101(size_t hash) { return hash % 2873307249533267101llu; }
static size_t mod3620140286502504283(size_t hash) { return hash % 3620140286502504283llu; }
static size_t mod4561090950536962147(size_t hash) { return hash % 4561090950536962147llu; }
static size_t mod5746614499066534157(size_t hash) { return hash % 5746614499066534157llu; }
static size_t mod7240280573005008577(size_t hash) { return hash % 7240280573005008577llu; }
static size_t mod9122181901073924329(size_t hash) { return hash % 9122181901073924329llu; }
static size_t mod11493228998133068689(size_t hash) { return hash % 11493228998133068689llu; }
static size_t mod14480561146010017169(size_t hash) { return hash % 14480561146010017169llu; }
static size_t mod18446744073709551557(size_t hash) { return hash % 18446744073709551557llu; }
using mod_function = size_t (*)(size_t);
mod_function next_size_over(size_t & size) const
{
// prime numbers generated by the following method:
// 1. start with a prime p = 2
// 2. go to wolfram alpha and get p = NextPrime(2 * p)
// 3. repeat 2. until you overflow 64 bits
// you now have large gaps which you would hit if somebody called reserve() with an unlucky number.
// 4. to fill the gaps for every prime p go to wolfram alpha and get ClosestPrime(p * 2^(1/3)) and ClosestPrime(p * 2^(2/3)) and put those in the gaps
// 5. get PrevPrime(2^64) and put it at the end
static constexpr const size_t prime_list[] =
{
2llu, 3llu, 5llu, 7llu, 11llu, 13llu, 17llu, 23llu, 29llu, 37llu, 47llu,
59llu, 73llu, 97llu, 127llu, 151llu, 197llu, 251llu, 313llu, 397llu,
499llu, 631llu, 797llu, 1009llu, 1259llu, 1597llu, 2011llu, 2539llu,
3203llu, 4027llu, 5087llu, 6421llu, 8089llu, 10193llu, 12853llu, 16193llu,
20399llu, 25717llu, 32401llu, 40823llu, 51437llu, 64811llu, 81649llu,
102877llu, 129607llu, 163307llu, 205759llu, 259229llu, 326617llu,
411527llu, 518509llu, 653267llu, 823117llu, 1037059llu, 1306601llu,
1646237llu, 2074129llu, 2613229llu, 3292489llu, 4148279llu, 5226491llu,
6584983llu, 8296553llu, 10453007llu, 13169977llu, 16593127llu, 20906033llu,
26339969llu, 33186281llu, 41812097llu, 52679969llu, 66372617llu,
83624237llu, 105359939llu, 132745199llu, 167248483llu, 210719881llu,
265490441llu, 334496971llu, 421439783llu, 530980861llu, 668993977llu,
842879579llu, 1061961721llu, 1337987929llu, 1685759167llu, 2123923447llu,
2675975881llu, 3371518343llu, 4247846927llu, 5351951779llu, 6743036717llu,
8495693897llu, 10703903591llu, 13486073473llu, 16991387857llu,
21407807219llu, 26972146961llu, 33982775741llu, 42815614441llu,
53944293929llu, 67965551447llu, 85631228929llu, 107888587883llu,
135931102921llu, 171262457903llu, 215777175787llu, 271862205833llu,
342524915839llu, 431554351609llu, 543724411781llu, 685049831731llu,
863108703229llu, 1087448823553llu, 1370099663459llu, 1726217406467llu,
2174897647073llu, 2740199326961llu, 3452434812973llu, 4349795294267llu,
5480398654009llu, 6904869625999llu, 8699590588571llu, 10960797308051llu,
13809739252051llu, 17399181177241llu, 21921594616111llu, 27619478504183llu,
34798362354533llu, 43843189232363llu, 55238957008387llu, 69596724709081llu,
87686378464759llu, 110477914016779llu, 139193449418173llu,
175372756929481llu, 220955828033581llu, 278386898836457llu,
350745513859007llu, 441911656067171llu, 556773797672909llu,
701491027718027llu, 883823312134381llu, 1113547595345903llu,
1402982055436147llu, 1767646624268779llu, 2227095190691797llu,
2805964110872297llu, 3535293248537579llu, 4454190381383713llu,
5611928221744609llu, 7070586497075177llu, 8908380762767489llu,
11223856443489329llu, 14141172994150357llu, 17816761525534927llu,
22447712886978529llu, 28282345988300791llu, 35633523051069991llu,
44895425773957261llu, 56564691976601587llu, 71267046102139967llu,
89790851547914507llu, 113129383953203213llu, 142534092204280003llu,
179581703095829107llu, 226258767906406483llu, 285068184408560057llu,
359163406191658253llu, 452517535812813007llu, 570136368817120201llu,
718326812383316683llu, 905035071625626043llu, 1140272737634240411llu,
1436653624766633509llu, 1810070143251252131llu, 2280545475268481167llu,
2873307249533267101llu, 3620140286502504283llu, 4561090950536962147llu,
5746614499066534157llu, 7240280573005008577llu, 9122181901073924329llu,
11493228998133068689llu, 14480561146010017169llu, 18446744073709551557llu
};
static constexpr size_t (* const mod_functions[])(size_t) =
{
&mod0, &mod2, &mod3, &mod5, &mod7, &mod11, &mod13, &mod17, &mod23, &mod29, &mod37,
&mod47, &mod59, &mod73, &mod97, &mod127, &mod151, &mod197, &mod251, &mod313, &mod397,
&mod499, &mod631, &mod797, &mod1009, &mod1259, &mod1597, &mod2011, &mod2539, &mod3203,
&mod4027, &mod5087, &mod6421, &mod8089, &mod10193, &mod12853, &mod16193, &mod20399,
&mod25717, &mod32401, &mod40823, &mod51437, &mod64811, &mod81649, &mod102877,
&mod129607, &mod163307, &mod205759, &mod259229, &mod326617, &mod411527, &mod518509,
&mod653267, &mod823117, &mod1037059, &mod1306601, &mod1646237, &mod2074129,
&mod2613229, &mod3292489, &mod4148279, &mod5226491, &mod6584983, &mod8296553,
&mod10453007, &mod13169977, &mod16593127, &mod20906033, &mod26339969, &mod33186281,
&mod41812097, &mod52679969, &mod66372617, &mod83624237, &mod105359939, &mod132745199,
&mod167248483, &mod210719881, &mod265490441, &mod334496971, &mod421439783,
&mod530980861, &mod668993977, &mod842879579, &mod1061961721, &mod1337987929,
&mod1685759167, &mod2123923447, &mod2675975881, &mod3371518343, &mod4247846927,
&mod5351951779, &mod6743036717, &mod8495693897, &mod10703903591, &mod13486073473,
&mod16991387857, &mod21407807219, &mod26972146961, &mod33982775741, &mod42815614441,
&mod53944293929, &mod67965551447, &mod85631228929, &mod107888587883, &mod135931102921,
&mod171262457903, &mod215777175787, &mod271862205833, &mod342524915839,
&mod431554351609, &mod543724411781, &mod685049831731, &mod863108703229,
&mod1087448823553, &mod1370099663459, &mod1726217406467, &mod2174897647073,
&mod2740199326961, &mod3452434812973, &mod4349795294267, &mod5480398654009,
&mod6904869625999, &mod8699590588571, &mod10960797308051, &mod13809739252051,
&mod17399181177241, &mod21921594616111, &mod27619478504183, &mod34798362354533,
&mod43843189232363, &mod55238957008387, &mod69596724709081, &mod87686378464759,
&mod110477914016779, &mod139193449418173, &mod175372756929481, &mod220955828033581,
&mod278386898836457, &mod350745513859007, &mod441911656067171, &mod556773797672909,
&mod701491027718027, &mod883823312134381, &mod1113547595345903, &mod1402982055436147,
&mod1767646624268779, &mod2227095190691797, &mod2805964110872297, &mod3535293248537579,
&mod4454190381383713, &mod5611928221744609, &mod7070586497075177, &mod8908380762767489,
&mod11223856443489329, &mod14141172994150357, &mod17816761525534927,
&mod22447712886978529, &mod28282345988300791, &mod35633523051069991,
&mod44895425773957261, &mod56564691976601587, &mod71267046102139967,
&mod89790851547914507, &mod113129383953203213, &mod142534092204280003,
&mod179581703095829107, &mod226258767906406483, &mod285068184408560057,
&mod359163406191658253, &mod452517535812813007, &mod570136368817120201,
&mod718326812383316683, &mod905035071625626043, &mod1140272737634240411,
&mod1436653624766633509, &mod1810070143251252131, &mod2280545475268481167,
&mod2873307249533267101, &mod3620140286502504283, &mod4561090950536962147,
&mod5746614499066534157, &mod7240280573005008577, &mod9122181901073924329,
&mod11493228998133068689, &mod14480561146010017169, &mod18446744073709551557
};
const size_t * found = std::lower_bound(std::begin(prime_list), std::end(prime_list) - 1, size);
size = *found;
return mod_functions[1 + found - prime_list];
}
void commit(mod_function new_mod_function)
{
current_mod_function = new_mod_function;
}
void reset()
{
current_mod_function = &mod0;
}
size_t index_for_hash(size_t hash, size_t /*num_slots_minus_one*/) const
{
return current_mod_function(hash);
}
size_t keep_in_range(size_t index, size_t num_slots_minus_one) const
{
return index > num_slots_minus_one ? current_mod_function(index) : index;
}
private:
mod_function current_mod_function = &mod0;
};
struct power_of_two_hash_policy
{
size_t index_for_hash(size_t hash, size_t num_slots_minus_one) const
{
return hash & num_slots_minus_one;
}
size_t keep_in_range(size_t index, size_t num_slots_minus_one) const
{
return index_for_hash(index, num_slots_minus_one);
}
int8_t next_size_over(size_t & size) const
{
size = detailv3::next_power_of_two(size);
return 0;
}
void commit(int8_t)
{
}
void reset()
{
}
};
struct fibonacci_hash_policy
{
size_t index_for_hash(size_t hash, size_t /*num_slots_minus_one*/) const
{
return (11400714819323198485ull * hash) >> shift;
}
size_t keep_in_range(size_t index, size_t num_slots_minus_one) const
{
return index & num_slots_minus_one;
}
int8_t next_size_over(size_t & size) const
{
size = std::max(size_t(2), detailv3::next_power_of_two(size));
return 64 - detailv3::log2(size);
}
void commit(int8_t shift)
{
this->shift = shift;
}
void reset()
{
shift = 63;
}
private:
int8_t shift = 63;
};
template<typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<K>, typename A = std::allocator<std::pair<K, V> > >
class flat_hash_map
: public detailv3::sherwood_v3_table
<
std::pair<K, V>,
K,
H,
detailv3::KeyOrValueHasher<K, std::pair<K, V>, H>,
E,
detailv3::KeyOrValueEquality<K, std::pair<K, V>, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<detailv3::sherwood_v3_entry<std::pair<K, V>>>
>
{
using Table = detailv3::sherwood_v3_table
<
std::pair<K, V>,
K,
H,
detailv3::KeyOrValueHasher<K, std::pair<K, V>, H>,
E,
detailv3::KeyOrValueEquality<K, std::pair<K, V>, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<detailv3::sherwood_v3_entry<std::pair<K, V>>>
>;
public:
using key_type = K;
using mapped_type = V;
using Table::Table;
flat_hash_map()
{
}
inline V & operator[](const K & key)
{
return emplace(key, convertible_to_value()).first->second;
}
inline V & operator[](K && key)
{
return emplace(std::move(key), convertible_to_value()).first->second;
}
V & at(const K & key)
{
auto found = this->find(key);
if (found == this->end())
throw std::out_of_range("Argument passed to at() was not in the map.");
return found->second;
}
const V & at(const K & key) const
{
auto found = this->find(key);
if (found == this->end())
throw std::out_of_range("Argument passed to at() was not in the map.");
return found->second;
}
using Table::emplace;
std::pair<typename Table::iterator, bool> emplace()
{
return emplace(key_type(), convertible_to_value());
}
template<typename M>
std::pair<typename Table::iterator, bool> insert_or_assign(const key_type & key, M && m)
{
auto emplace_result = emplace(key, std::forward<M>(m));
if (!emplace_result.second)
emplace_result.first->second = std::forward<M>(m);
return emplace_result;
}
template<typename M>
std::pair<typename Table::iterator, bool> insert_or_assign(key_type && key, M && m)
{
auto emplace_result = emplace(std::move(key), std::forward<M>(m));
if (!emplace_result.second)
emplace_result.first->second = std::forward<M>(m);
return emplace_result;
}
template<typename M>
typename Table::iterator insert_or_assign(typename Table::const_iterator, const key_type & key, M && m)
{
return insert_or_assign(key, std::forward<M>(m)).first;
}
template<typename M>
typename Table::iterator insert_or_assign(typename Table::const_iterator, key_type && key, M && m)
{
return insert_or_assign(std::move(key), std::forward<M>(m)).first;
}
friend bool operator==(const flat_hash_map & lhs, const flat_hash_map & rhs)
{
if (lhs.size() != rhs.size())
return false;
for (const typename Table::value_type & value : lhs)
{
auto found = rhs.find(value.first);
if (found == rhs.end())
return false;
else if (value.second != found->second)
return false;
}
return true;
}
friend bool operator!=(const flat_hash_map & lhs, const flat_hash_map & rhs)
{
return !(lhs == rhs);
}
private:
struct convertible_to_value
{
operator V() const
{
return V();
}
};
};
template<typename T, typename H = std::hash<T>, typename E = std::equal_to<T>, typename A = std::allocator<T> >
class flat_hash_set
: public detailv3::sherwood_v3_table
<
T,
T,
H,
detailv3::functor_storage<size_t, H>,
E,
detailv3::functor_storage<bool, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<detailv3::sherwood_v3_entry<T>>
>
{
using Table = detailv3::sherwood_v3_table
<
T,
T,
H,
detailv3::functor_storage<size_t, H>,
E,
detailv3::functor_storage<bool, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<detailv3::sherwood_v3_entry<T>>
>;
public:
using key_type = T;
using Table::Table;
flat_hash_set()
{
}
template<typename... Args>
std::pair<typename Table::iterator, bool> emplace(Args &&... args)
{
return Table::emplace(T(std::forward<Args>(args)...));
}
std::pair<typename Table::iterator, bool> emplace(const key_type & arg)
{
return Table::emplace(arg);
}
std::pair<typename Table::iterator, bool> emplace(key_type & arg)
{
return Table::emplace(arg);
}
std::pair<typename Table::iterator, bool> emplace(const key_type && arg)
{
return Table::emplace(std::move(arg));
}
std::pair<typename Table::iterator, bool> emplace(key_type && arg)
{
return Table::emplace(std::move(arg));
}
friend bool operator==(const flat_hash_set & lhs, const flat_hash_set & rhs)
{
if (lhs.size() != rhs.size())
return false;
for (const T & value : lhs)
{
if (rhs.find(value) == rhs.end())
return false;
}
return true;
}
friend bool operator!=(const flat_hash_set & lhs, const flat_hash_set & rhs)
{
return !(lhs == rhs);
}
};
template<typename T>
struct power_of_two_std_hash : std::hash<T>
{
typedef ska::power_of_two_hash_policy hash_policy;
};
} // end namespace ska
// START include/flat_hash_map/bytell_hash_map.hpp
// Copyright Malte Skarupke 2017.
// Distributed under the Boost Software License, Version 1.0.
// (See http://www.boost.org/LICENSE_1_0.txt)
#include <cstdint>
#include <cstddef>
#include <cmath>
#include <algorithm>
#include <iterator>
#include <utility>
#include <type_traits>
#include <vector>
#include <array>
namespace ska
{
namespace detailv8
{
using ska::detailv3::functor_storage;
using ska::detailv3::KeyOrValueHasher;
using ska::detailv3::KeyOrValueEquality;
using ska::detailv3::AssignIfTrue;
using ska::detailv3::HashPolicySelector;
template<typename = void>
struct sherwood_v8_constants
{
static constexpr int8_t magic_for_empty = int8_t(0b11111111);
static constexpr int8_t magic_for_reserved = int8_t(0b11111110);
static constexpr int8_t bits_for_direct_hit = int8_t(0b10000000);
static constexpr int8_t magic_for_direct_hit = int8_t(0b00000000);
static constexpr int8_t magic_for_list_entry = int8_t(0b10000000);
static constexpr int8_t bits_for_distance = int8_t(0b01111111);
inline static int distance_from_metadata(int8_t metadata)
{
return metadata & bits_for_distance;
}
static constexpr int num_jump_distances = 126;
// jump distances chosen like this:
// 1. pick the first 16 integers to promote staying in the same block
// 2. add the next 66 triangular numbers to get even jumps when
// the hash table is a power of two
// 3. add 44 more triangular numbers at a much steeper growth rate
// to get a sequence that allows large jumps so that a table
// with 10000 sequential numbers doesn't endlessly re-allocate
static constexpr size_t jump_distances[num_jump_distances]
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231,
253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630,
666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176,
1225, 1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830,
1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556,
3741, 8385, 18915, 42486, 95703, 215496, 485605, 1091503, 2456436,
5529475, 12437578, 27986421, 62972253, 141700195, 318819126, 717314626,
1614000520, 3631437253, 8170829695, 18384318876, 41364501751,
93070021080, 209407709220, 471167588430, 1060127437995, 2385287281530,
5366895564381, 12075513791265, 27169907873235, 61132301007778,
137547673121001, 309482258302503, 696335090510256, 1566753939653640,
3525196427195653, 7931691866727775, 17846306747368716,
40154190394120111, 90346928493040500, 203280588949935750,
457381324898247375, 1029107980662394500, 2315492957028380766,
5209859150892887590,
};
};
template<typename T>
constexpr int8_t sherwood_v8_constants<T>::magic_for_empty;
template<typename T>
constexpr int8_t sherwood_v8_constants<T>::magic_for_reserved;
template<typename T>
constexpr int8_t sherwood_v8_constants<T>::bits_for_direct_hit;
template<typename T>
constexpr int8_t sherwood_v8_constants<T>::magic_for_direct_hit;
template<typename T>
constexpr int8_t sherwood_v8_constants<T>::magic_for_list_entry;
template<typename T>
constexpr int8_t sherwood_v8_constants<T>::bits_for_distance;
template<typename T>
constexpr int sherwood_v8_constants<T>::num_jump_distances;
template<typename T>
constexpr size_t sherwood_v8_constants<T>::jump_distances[num_jump_distances];
template<typename T, uint8_t BlockSize>
struct sherwood_v8_block
{
sherwood_v8_block()
{
}
~sherwood_v8_block()
{
}
int8_t control_bytes[BlockSize];
union
{
T data[BlockSize];
};
static sherwood_v8_block * empty_block()
{
static std::array<int8_t, BlockSize> empty_bytes = []
{
std::array<int8_t, BlockSize> result;
result.fill(sherwood_v8_constants<>::magic_for_empty);
return result;
}();
return reinterpret_cast<sherwood_v8_block *>(&empty_bytes);
}
int first_empty_index() const
{
for (int i = 0; i < BlockSize; ++i)
{
if (control_bytes[i] == sherwood_v8_constants<>::magic_for_empty)
return i;
}
return -1;
}
void fill_control_bytes(int8_t value)
{
std::fill(std::begin(control_bytes), std::end(control_bytes), value);
}
};
template<typename T, typename FindKey, typename ArgumentHash, typename Hasher, typename ArgumentEqual, typename Equal, typename ArgumentAlloc, typename ByteAlloc, uint8_t BlockSize>
class sherwood_v8_table : private ByteAlloc, private Hasher, private Equal
{
using AllocatorTraits = std::allocator_traits<ByteAlloc>;
using BlockType = sherwood_v8_block<T, BlockSize>;
using BlockPointer = BlockType *;
using BytePointer = typename AllocatorTraits::pointer;
struct convertible_to_iterator;
using Constants = sherwood_v8_constants<>;
public:
using value_type = T;
using size_type = size_t;
using difference_type = std::ptrdiff_t;
using hasher = ArgumentHash;
using key_equal = ArgumentEqual;
using allocator_type = ByteAlloc;
using reference = value_type &;
using const_reference = const value_type &;
using pointer = value_type *;
using const_pointer = const value_type *;
sherwood_v8_table()
{
}
explicit sherwood_v8_table(size_type bucket_count, const ArgumentHash & hash = ArgumentHash(), const ArgumentEqual & equal = ArgumentEqual(), const ArgumentAlloc & alloc = ArgumentAlloc())
: ByteAlloc(alloc), Hasher(hash), Equal(equal)
{
if (bucket_count)
rehash(bucket_count);
}
sherwood_v8_table(size_type bucket_count, const ArgumentAlloc & alloc)
: sherwood_v8_table(bucket_count, ArgumentHash(), ArgumentEqual(), alloc)
{
}
sherwood_v8_table(size_type bucket_count, const ArgumentHash & hash, const ArgumentAlloc & alloc)
: sherwood_v8_table(bucket_count, hash, ArgumentEqual(), alloc)
{
}
explicit sherwood_v8_table(const ArgumentAlloc & alloc)
: ByteAlloc(alloc)
{
}
template<typename It>
sherwood_v8_table(It first, It last, size_type bucket_count = 0, const ArgumentHash & hash = ArgumentHash(), const ArgumentEqual & equal = ArgumentEqual(), const ArgumentAlloc & alloc = ArgumentAlloc())
: sherwood_v8_table(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<typename It>
sherwood_v8_table(It first, It last, size_type bucket_count, const ArgumentAlloc & alloc)
: sherwood_v8_table(first, last, bucket_count, ArgumentHash(), ArgumentEqual(), alloc)
{
}
template<typename It>
sherwood_v8_table(It first, It last, size_type bucket_count, const ArgumentHash & hash, const ArgumentAlloc & alloc)
: sherwood_v8_table(first, last, bucket_count, hash, ArgumentEqual(), alloc)
{
}
sherwood_v8_table(std::initializer_list<T> il, size_type bucket_count = 0, const ArgumentHash & hash = ArgumentHash(), const ArgumentEqual & equal = ArgumentEqual(), const ArgumentAlloc & alloc = ArgumentAlloc())
: sherwood_v8_table(bucket_count, hash, equal, alloc)
{
if (bucket_count == 0)
rehash(il.size());
insert(il.begin(), il.end());
}
sherwood_v8_table(std::initializer_list<T> il, size_type bucket_count, const ArgumentAlloc & alloc)
: sherwood_v8_table(il, bucket_count, ArgumentHash(), ArgumentEqual(), alloc)
{
}
sherwood_v8_table(std::initializer_list<T> il, size_type bucket_count, const ArgumentHash & hash, const ArgumentAlloc & alloc)
: sherwood_v8_table(il, bucket_count, hash, ArgumentEqual(), alloc)
{
}
sherwood_v8_table(const sherwood_v8_table & other)
: sherwood_v8_table(other, AllocatorTraits::select_on_container_copy_construction(other.get_allocator()))
{
}
sherwood_v8_table(const sherwood_v8_table & other, const ArgumentAlloc & alloc)
: ByteAlloc(alloc), Hasher(other), Equal(other), _max_load_factor(other._max_load_factor)
{
rehash_for_other_container(other);
try
{
insert(other.begin(), other.end());
}
catch(...)
{
clear();
deallocate_data(entries, num_slots_minus_one);
throw;
}
}
sherwood_v8_table(sherwood_v8_table && other) noexcept
: ByteAlloc(std::move(other)), Hasher(std::move(other)), Equal(std::move(other))
, _max_load_factor(other._max_load_factor)
{
swap_pointers(other);
}
sherwood_v8_table(sherwood_v8_table && other, const ArgumentAlloc & alloc) noexcept
: ByteAlloc(alloc), Hasher(std::move(other)), Equal(std::move(other))
, _max_load_factor(other._max_load_factor)
{
swap_pointers(other);
}
sherwood_v8_table & operator=(const sherwood_v8_table & other)
{
if (this == std::addressof(other))
return *this;
clear();
if (AllocatorTraits::propagate_on_container_copy_assignment::value)
{
if (static_cast<ByteAlloc &>(*this) != static_cast<const ByteAlloc &>(other))
{
reset_to_empty_state();
}
AssignIfTrue<ByteAlloc, AllocatorTraits::propagate_on_container_copy_assignment::value>()(*this, other);
}
_max_load_factor = other._max_load_factor;
static_cast<Hasher &>(*this) = other;
static_cast<Equal &>(*this) = other;
rehash_for_other_container(other);
insert(other.begin(), other.end());
return *this;
}
sherwood_v8_table & operator=(sherwood_v8_table && other) noexcept
{
if (this == std::addressof(other))
return *this;
else if (AllocatorTraits::propagate_on_container_move_assignment::value)
{
clear();
reset_to_empty_state();
AssignIfTrue<ByteAlloc, AllocatorTraits::propagate_on_container_move_assignment::value>()(*this, std::move(other));
swap_pointers(other);
}
else if (static_cast<ByteAlloc &>(*this) == static_cast<ByteAlloc &>(other))
{
swap_pointers(other);
}
else
{
clear();
_max_load_factor = other._max_load_factor;
rehash_for_other_container(other);
for (T & elem : other)
emplace(std::move(elem));
other.clear();
}
static_cast<Hasher &>(*this) = std::move(other);
static_cast<Equal &>(*this) = std::move(other);
return *this;
}
~sherwood_v8_table()
{
clear();
deallocate_data(entries, num_slots_minus_one);
}
const allocator_type & get_allocator() const
{
return static_cast<const allocator_type &>(*this);
}
const ArgumentEqual & key_eq() const
{
return static_cast<const ArgumentEqual &>(*this);
}
const ArgumentHash & hash_function() const
{
return static_cast<const ArgumentHash &>(*this);
}
template<typename ValueType>
struct templated_iterator
{
private:
friend class sherwood_v8_table;
BlockPointer current = BlockPointer();
size_t index = 0;
public:
templated_iterator()
{
}
templated_iterator(BlockPointer entries, size_t index)
: current(entries)
, index(index)
{
}
using iterator_category = std::forward_iterator_tag;
using value_type = ValueType;
using difference_type = ptrdiff_t;
using pointer = ValueType *;
using reference = ValueType &;
friend bool operator==(const templated_iterator & lhs, const templated_iterator & rhs)
{
return lhs.index == rhs.index;
}
friend bool operator!=(const templated_iterator & lhs, const templated_iterator & rhs)
{
return !(lhs == rhs);
}
templated_iterator & operator++()
{
do
{
if (index % BlockSize == 0)
--current;
if (index-- == 0)
break;
}
while(current->control_bytes[index % BlockSize] == Constants::magic_for_empty);
return *this;
}
templated_iterator operator++(int)
{
templated_iterator copy(*this);
++*this;
return copy;
}
ValueType & operator*() const
{
return current->data[index % BlockSize];
}
ValueType * operator->() const
{
return current->data + index % BlockSize;
}
operator templated_iterator<const value_type>() const
{
return { current, index };
}
};
using iterator = templated_iterator<value_type>;
using const_iterator = templated_iterator<const value_type>;
iterator begin()
{
size_t num_slots = num_slots_minus_one ? num_slots_minus_one + 1 : 0;
return ++iterator{ entries + num_slots / BlockSize, num_slots };
}
const_iterator begin() const
{
size_t num_slots = num_slots_minus_one ? num_slots_minus_one + 1 : 0;
return ++iterator{ entries + num_slots / BlockSize, num_slots };
}
const_iterator cbegin() const
{
return begin();
}
iterator end()
{
return { entries - 1, std::numeric_limits<size_t>::max() };
}
const_iterator end() const
{
return { entries - 1, std::numeric_limits<size_t>::max() };
}
const_iterator cend() const
{
return end();
}
inline iterator find(const FindKey & key)
{
size_t index = hash_object(key);
size_t num_slots_minus_one = this->num_slots_minus_one;
BlockPointer entries = this->entries;
index = hash_policy.index_for_hash(index, num_slots_minus_one);
bool first = true;
for (;;)
{
size_t block_index = index / BlockSize;
int index_in_block = index % BlockSize;
BlockPointer block = entries + block_index;
int8_t metadata = block->control_bytes[index_in_block];
if (first)
{
if ((metadata & Constants::bits_for_direct_hit) != Constants::magic_for_direct_hit)
return end();
first = false;
}
if (compares_equal(key, block->data[index_in_block]))
return { block, index };
int8_t to_next_index = metadata & Constants::bits_for_distance;
if (to_next_index == 0)
return end();
index += Constants::jump_distances[to_next_index];
index = hash_policy.keep_in_range(index, num_slots_minus_one);
}
}
inline const_iterator find(const FindKey & key) const
{
return const_cast<sherwood_v8_table *>(this)->find(key);
}
size_t count(const FindKey & key) const
{
return find(key) == end() ? 0 : 1;
}
std::pair<iterator, iterator> equal_range(const FindKey & key)
{
iterator found = find(key);
if (found == end())
return { found, found };
else
return { found, std::next(found) };
}
std::pair<const_iterator, const_iterator> equal_range(const FindKey & key) const
{
const_iterator found = find(key);
if (found == end())
return { found, found };
else
return { found, std::next(found) };
}
template<typename Key, typename... Args>
inline std::pair<iterator, bool> emplace(Key && key, Args &&... args)
{
size_t index = hash_object(key);
size_t num_slots_minus_one = this->num_slots_minus_one;
BlockPointer entries = this->entries;
index = hash_policy.index_for_hash(index, num_slots_minus_one);
bool first = true;
for (;;)
{
size_t block_index = index / BlockSize;
int index_in_block = index % BlockSize;
BlockPointer block = entries + block_index;
int8_t metadata = block->control_bytes[index_in_block];
if (first)
{
if ((metadata & Constants::bits_for_direct_hit) != Constants::magic_for_direct_hit)
return emplace_direct_hit({ index, block }, std::forward<Key>(key), std::forward<Args>(args)...);
first = false;
}
if (compares_equal(key, block->data[index_in_block]))
return { { block, index }, false };
int8_t to_next_index = metadata & Constants::bits_for_distance;
if (to_next_index == 0)
return emplace_new_key({ index, block }, std::forward<Key>(key), std::forward<Args>(args)...);
index += Constants::jump_distances[to_next_index];
index = hash_policy.keep_in_range(index, num_slots_minus_one);
}
}
std::pair<iterator, bool> insert(const value_type & value)
{
return emplace(value);
}
std::pair<iterator, bool> insert(value_type && value)
{
return emplace(std::move(value));
}
template<typename... Args>
iterator emplace_hint(const_iterator, Args &&... args)
{
return emplace(std::forward<Args>(args)...).first;
}
iterator insert(const_iterator, const value_type & value)
{
return emplace(value).first;
}
iterator insert(const_iterator, value_type && value)
{
return emplace(std::move(value)).first;
}
template<typename It>
void insert(It begin, It end)
{
for (; begin != end; ++begin)
{
emplace(*begin);
}
}
void insert(std::initializer_list<value_type> il)
{
insert(il.begin(), il.end());
}
void rehash(size_t num_items)
{
num_items = std::max(num_items, static_cast<size_t>(std::ceil(num_elements / static_cast<double>(_max_load_factor))));
if (num_items == 0)
{
reset_to_empty_state();
return;
}
auto new_prime_index = hash_policy.next_size_over(num_items);
if (num_items == num_slots_minus_one + 1)
return;
size_t num_blocks = num_items / BlockSize;
if (num_items % BlockSize)
++num_blocks;
size_t memory_requirement = calculate_memory_requirement(num_blocks);
unsigned char * new_memory = &*AllocatorTraits::allocate(*this, memory_requirement);
BlockPointer new_buckets = reinterpret_cast<BlockPointer>(new_memory);
BlockPointer special_end_item = new_buckets + num_blocks;
for (BlockPointer it = new_buckets; it <= special_end_item; ++it)
it->fill_control_bytes(Constants::magic_for_empty);
using std::swap;
swap(entries, new_buckets);
swap(num_slots_minus_one, num_items);
--num_slots_minus_one;
hash_policy.commit(new_prime_index);
num_elements = 0;
if (num_items)
++num_items;
size_t old_num_blocks = num_items / BlockSize;
if (num_items % BlockSize)
++old_num_blocks;
for (BlockPointer it = new_buckets, end = new_buckets + old_num_blocks; it != end; ++it)
{
for (int i = 0; i < BlockSize; ++i)
{
int8_t metadata = it->control_bytes[i];
if (metadata != Constants::magic_for_empty && metadata != Constants::magic_for_reserved)
{
emplace(std::move(it->data[i]));
AllocatorTraits::destroy(*this, it->data + i);
}
}
}
deallocate_data(new_buckets, num_items - 1);
}
void reserve(size_t num_elements)
{
size_t required_buckets = num_buckets_for_reserve(num_elements);
if (required_buckets > bucket_count())
rehash(required_buckets);
}
// the return value is a type that can be converted to an iterator
// the reason for doing this is that it's not free to find the
// iterator pointing at the next element. if you care about the
// next iterator, turn the return value into an iterator
convertible_to_iterator erase(const_iterator to_erase)
{
LinkedListIt current = { to_erase.index, to_erase.current };
if (current.has_next())
{
LinkedListIt previous = current;
LinkedListIt next = current.next(*this);
while (next.has_next())
{
previous = next;
next = next.next(*this);
}
AllocatorTraits::destroy(*this, std::addressof(*current));
AllocatorTraits::construct(*this, std::addressof(*current), std::move(*next));
AllocatorTraits::destroy(*this, std::addressof(*next));
next.set_metadata(Constants::magic_for_empty);
previous.clear_next();
}
else
{
if (!current.is_direct_hit())
find_parent_block(current).clear_next();
AllocatorTraits::destroy(*this, std::addressof(*current));
current.set_metadata(Constants::magic_for_empty);
}
--num_elements;
return { to_erase.current, to_erase.index };
}
iterator erase(const_iterator begin_it, const_iterator end_it)
{
if (begin_it == end_it)
return { begin_it.current, begin_it.index };
if (std::next(begin_it) == end_it)
return erase(begin_it);
if (begin_it == begin() && end_it == end())
{
clear();
return { end_it.current, end_it.index };
}
std::vector<std::pair<int, LinkedListIt>> depth_in_chain;
for (const_iterator it = begin_it; it != end_it; ++it)
{
LinkedListIt list_it(it.index, it.current);
if (list_it.is_direct_hit())
depth_in_chain.emplace_back(0, list_it);
else
{
LinkedListIt root = find_direct_hit(list_it);
int distance = 1;
for (;;)
{
LinkedListIt next = root.next(*this);
if (next == list_it)
break;
++distance;
root = next;
}
depth_in_chain.emplace_back(distance, list_it);
}
}
std::sort(depth_in_chain.begin(), depth_in_chain.end(), [](const auto & a, const auto & b) { return a.first < b.first; });
for (auto it = depth_in_chain.rbegin(), end = depth_in_chain.rend(); it != end; ++it)
{
erase(it->second.it());
}
if (begin_it.current->control_bytes[begin_it.index % BlockSize] == Constants::magic_for_empty)
return ++iterator{ begin_it.current, begin_it.index };
else
return { begin_it.current, begin_it.index };
}
size_t erase(const FindKey & key)
{
auto found = find(key);
if (found == end())
return 0;
else
{
erase(found);
return 1;
}
}
void clear()
{
if (!num_slots_minus_one)
return;
size_t num_slots = num_slots_minus_one + 1;
size_t num_blocks = num_slots / BlockSize;
if (num_slots % BlockSize)
++num_blocks;
for (BlockPointer it = entries, end = it + num_blocks; it != end; ++it)
{
for (int i = 0; i < BlockSize; ++i)
{
if (it->control_bytes[i] != Constants::magic_for_empty)
{
AllocatorTraits::destroy(*this, std::addressof(it->data[i]));
it->control_bytes[i] = Constants::magic_for_empty;
}
}
}
num_elements = 0;
}
void shrink_to_fit()
{
rehash_for_other_container(*this);
}
void swap(sherwood_v8_table & other)
{
using std::swap;
swap_pointers(other);
swap(static_cast<ArgumentHash &>(*this), static_cast<ArgumentHash &>(other));
swap(static_cast<ArgumentEqual &>(*this), static_cast<ArgumentEqual &>(other));
if (AllocatorTraits::propagate_on_container_swap::value)
swap(static_cast<ByteAlloc &>(*this), static_cast<ByteAlloc &>(other));
}
size_t size() const
{
return num_elements;
}
size_t max_size() const
{
return (AllocatorTraits::max_size(*this)) / sizeof(T);
}
size_t bucket_count() const
{
return num_slots_minus_one ? num_slots_minus_one + 1 : 0;
}
size_type max_bucket_count() const
{
return (AllocatorTraits::max_size(*this)) / sizeof(T);
}
size_t bucket(const FindKey & key) const
{
return hash_policy.index_for_hash(hash_object(key), num_slots_minus_one);
}
float load_factor() const
{
return static_cast<double>(num_elements) / (num_slots_minus_one + 1);
}
void max_load_factor(float value)
{
_max_load_factor = value;
}
float max_load_factor() const
{
return _max_load_factor;
}
bool empty() const
{
return num_elements == 0;
}
private:
BlockPointer entries = BlockType::empty_block();
size_t num_slots_minus_one = 0;
typename HashPolicySelector<ArgumentHash>::type hash_policy;
float _max_load_factor = 0.9375f;
size_t num_elements = 0;
size_t num_buckets_for_reserve(size_t num_elements) const
{
return static_cast<size_t>(std::ceil(num_elements / static_cast<double>(_max_load_factor)));
}
void rehash_for_other_container(const sherwood_v8_table & other)
{
rehash(std::min(num_buckets_for_reserve(other.size()), other.bucket_count()));
}
bool is_full() const
{
if (!num_slots_minus_one)
return true;
else
return num_elements + 1 > (num_slots_minus_one + 1) * static_cast<double>(_max_load_factor);
}
void swap_pointers(sherwood_v8_table & other)
{
using std::swap;
swap(hash_policy, other.hash_policy);
swap(entries, other.entries);
swap(num_slots_minus_one, other.num_slots_minus_one);
swap(num_elements, other.num_elements);
swap(_max_load_factor, other._max_load_factor);
}
struct LinkedListIt
{
size_t index = 0;
BlockPointer block = nullptr;
LinkedListIt()
{
}
LinkedListIt(size_t index, BlockPointer block)
: index(index), block(block)
{
}
iterator it() const
{
return { block, index };
}
int index_in_block() const
{
return index % BlockSize;
}
bool is_direct_hit() const
{
return (metadata() & Constants::bits_for_direct_hit) == Constants::magic_for_direct_hit;
}
bool is_empty() const
{
return metadata() == Constants::magic_for_empty;
}
bool has_next() const
{
return jump_index() != 0;
}
int8_t jump_index() const
{
return Constants::distance_from_metadata(metadata());
}
int8_t metadata() const
{
return block->control_bytes[index_in_block()];
}
void set_metadata(int8_t metadata)
{
block->control_bytes[index_in_block()] = metadata;
}
LinkedListIt next(sherwood_v8_table & table) const
{
int8_t distance = jump_index();
size_t next_index = table.hash_policy.keep_in_range(index + Constants::jump_distances[distance], table.num_slots_minus_one);
return { next_index, table.entries + next_index / BlockSize };
}
void set_next(int8_t jump_index)
{
int8_t & metadata = block->control_bytes[index_in_block()];
metadata = (metadata & ~Constants::bits_for_distance) | jump_index;
}
void clear_next()
{
set_next(0);
}
value_type & operator*() const
{
return block->data[index_in_block()];
}
bool operator!() const
{
return !block;
}
explicit operator bool() const
{
return block != nullptr;
}
bool operator==(const LinkedListIt & other) const
{
return index == other.index;
}
bool operator!=(const LinkedListIt & other) const
{
return !(*this == other);
}
};
template<typename... Args>
SKA_NOINLINE(std::pair<iterator, bool>) emplace_direct_hit(LinkedListIt block, Args &&... args)
{
using std::swap;
if (is_full())
{
grow();
return emplace(std::forward<Args>(args)...);
}
if (block.metadata() == Constants::magic_for_empty)
{
AllocatorTraits::construct(*this, std::addressof(*block), std::forward<Args>(args)...);
block.set_metadata(Constants::magic_for_direct_hit);
++num_elements;
return { block.it(), true };
}
else
{
LinkedListIt parent_block = find_parent_block(block);
std::pair<int8_t, LinkedListIt> free_block = find_free_index(parent_block);
if (!free_block.first)
{
grow();
return emplace(std::forward<Args>(args)...);
}
value_type new_value(std::forward<Args>(args)...);
for (LinkedListIt it = block;;)
{
AllocatorTraits::construct(*this, std::addressof(*free_block.second), std::move(*it));
AllocatorTraits::destroy(*this, std::addressof(*it));
parent_block.set_next(free_block.first);
free_block.second.set_metadata(Constants::magic_for_list_entry);
if (!it.has_next())
{
it.set_metadata(Constants::magic_for_empty);
break;
}
LinkedListIt next = it.next(*this);
it.set_metadata(Constants::magic_for_empty);
block.set_metadata(Constants::magic_for_reserved);
it = next;
parent_block = free_block.second;
free_block = find_free_index(free_block.second);
if (!free_block.first)
{
grow();
return emplace(std::move(new_value));
}
}
AllocatorTraits::construct(*this, std::addressof(*block), std::move(new_value));
block.set_metadata(Constants::magic_for_direct_hit);
++num_elements;
return { block.it(), true };
}
}
template<typename... Args>
SKA_NOINLINE(std::pair<iterator, bool>) emplace_new_key(LinkedListIt parent, Args &&... args)
{
if (is_full())
{
grow();
return emplace(std::forward<Args>(args)...);
}
std::pair<int8_t, LinkedListIt> free_block = find_free_index(parent);
if (!free_block.first)
{
grow();
return emplace(std::forward<Args>(args)...);
}
AllocatorTraits::construct(*this, std::addressof(*free_block.second), std::forward<Args>(args)...);
free_block.second.set_metadata(Constants::magic_for_list_entry);
parent.set_next(free_block.first);
++num_elements;
return { free_block.second.it(), true };
}
LinkedListIt find_direct_hit(LinkedListIt child) const
{
size_t to_move_hash = hash_object(*child);
size_t to_move_index = hash_policy.index_for_hash(to_move_hash, num_slots_minus_one);
return { to_move_index, entries + to_move_index / BlockSize };
}
LinkedListIt find_parent_block(LinkedListIt child)
{
LinkedListIt parent_block = find_direct_hit(child);
for (;;)
{
LinkedListIt next = parent_block.next(*this);
if (next == child)
return parent_block;
parent_block = next;
}
}
std::pair<int8_t, LinkedListIt> find_free_index(LinkedListIt parent) const
{
for (int8_t jump_index = 1; jump_index < Constants::num_jump_distances; ++jump_index)
{
size_t index = hash_policy.keep_in_range(parent.index + Constants::jump_distances[jump_index], num_slots_minus_one);
BlockPointer block = entries + index / BlockSize;
if (block->control_bytes[index % BlockSize] == Constants::magic_for_empty)
return { jump_index, { index, block } };
}
return { 0, {} };
}
void grow()
{
rehash(std::max(size_t(10), 2 * bucket_count()));
}
size_t calculate_memory_requirement(size_t num_blocks)
{
size_t memory_required = sizeof(BlockType) * num_blocks;
memory_required += BlockSize; // for metadata of past-the-end pointer
return memory_required;
}
void deallocate_data(BlockPointer begin, size_t num_slots_minus_one)
{
if (begin == BlockType::empty_block())
return;
++num_slots_minus_one;
size_t num_blocks = num_slots_minus_one / BlockSize;
if (num_slots_minus_one % BlockSize)
++num_blocks;
size_t memory = calculate_memory_requirement(num_blocks);
unsigned char * as_byte_pointer = reinterpret_cast<unsigned char *>(begin);
AllocatorTraits::deallocate(*this, typename AllocatorTraits::pointer(as_byte_pointer), memory);
}
void reset_to_empty_state()
{
deallocate_data(entries, num_slots_minus_one);
entries = BlockType::empty_block();
num_slots_minus_one = 0;
hash_policy.reset();
}
template<typename U>
size_t hash_object(const U & key)
{
return static_cast<Hasher &>(*this)(key);
}
template<typename U>
size_t hash_object(const U & key) const
{
return static_cast<const Hasher &>(*this)(key);
}
template<typename L, typename R>
bool compares_equal(const L & lhs, const R & rhs)
{
return static_cast<Equal &>(*this)(lhs, rhs);
}
struct convertible_to_iterator
{
BlockPointer it;
size_t index;
operator iterator()
{
if (it->control_bytes[index % BlockSize] == Constants::magic_for_empty)
return ++iterator{it, index};
else
return { it, index };
}
operator const_iterator()
{
if (it->control_bytes[index % BlockSize] == Constants::magic_for_empty)
return ++iterator{it, index};
else
return { it, index };
}
};
};
template<typename T, typename Enable = void>
struct AlignmentOr8Bytes
{
static constexpr size_t value = 8;
};
template<typename T>
struct AlignmentOr8Bytes<T, typename std::enable_if<alignof(T) >= 1>::type>
{
static constexpr size_t value = alignof(T);
};
template<typename... Args>
struct CalculateBytellBlockSize;
template<typename First, typename... More>
struct CalculateBytellBlockSize<First, More...>
{
static constexpr size_t this_value = AlignmentOr8Bytes<First>::value;
static constexpr size_t base_value = CalculateBytellBlockSize<More...>::value;
static constexpr size_t value = this_value > base_value ? this_value : base_value;
};
template<>
struct CalculateBytellBlockSize<>
{
static constexpr size_t value = 8;
};
}
template<typename K, typename V, typename H = std::hash<K>, typename E = std::equal_to<K>, typename A = std::allocator<std::pair<K, V> > >
class bytell_hash_map
: public detailv8::sherwood_v8_table
<
std::pair<K, V>,
K,
H,
detailv8::KeyOrValueHasher<K, std::pair<K, V>, H>,
E,
detailv8::KeyOrValueEquality<K, std::pair<K, V>, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<unsigned char>,
detailv8::CalculateBytellBlockSize<K, V>::value
>
{
using Table = detailv8::sherwood_v8_table
<
std::pair<K, V>,
K,
H,
detailv8::KeyOrValueHasher<K, std::pair<K, V>, H>,
E,
detailv8::KeyOrValueEquality<K, std::pair<K, V>, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<unsigned char>,
detailv8::CalculateBytellBlockSize<K, V>::value
>;
public:
using key_type = K;
using mapped_type = V;
using Table::Table;
bytell_hash_map()
{
}
inline V & operator[](const K & key)
{
return emplace(key, convertible_to_value()).first->second;
}
inline V & operator[](K && key)
{
return emplace(std::move(key), convertible_to_value()).first->second;
}
V & at(const K & key)
{
auto found = this->find(key);
if (found == this->end())
throw std::out_of_range("Argument passed to at() was not in the map.");
return found->second;
}
const V & at(const K & key) const
{
auto found = this->find(key);
if (found == this->end())
throw std::out_of_range("Argument passed to at() was not in the map.");
return found->second;
}
using Table::emplace;
std::pair<typename Table::iterator, bool> emplace()
{
return emplace(key_type(), convertible_to_value());
}
template<typename M>
std::pair<typename Table::iterator, bool> insert_or_assign(const key_type & key, M && m)
{
auto emplace_result = emplace(key, std::forward<M>(m));
if (!emplace_result.second)
emplace_result.first->second = std::forward<M>(m);
return emplace_result;
}
template<typename M>
std::pair<typename Table::iterator, bool> insert_or_assign(key_type && key, M && m)
{
auto emplace_result = emplace(std::move(key), std::forward<M>(m));
if (!emplace_result.second)
emplace_result.first->second = std::forward<M>(m);
return emplace_result;
}
template<typename M>
typename Table::iterator insert_or_assign(typename Table::const_iterator, const key_type & key, M && m)
{
return insert_or_assign(key, std::forward<M>(m)).first;
}
template<typename M>
typename Table::iterator insert_or_assign(typename Table::const_iterator, key_type && key, M && m)
{
return insert_or_assign(std::move(key), std::forward<M>(m)).first;
}
friend bool operator==(const bytell_hash_map & lhs, const bytell_hash_map & rhs)
{
if (lhs.size() != rhs.size())
return false;
for (const typename Table::value_type & value : lhs)
{
auto found = rhs.find(value.first);
if (found == rhs.end())
return false;
else if (value.second != found->second)
return false;
}
return true;
}
friend bool operator!=(const bytell_hash_map & lhs, const bytell_hash_map & rhs)
{
return !(lhs == rhs);
}
private:
struct convertible_to_value
{
operator V() const
{
return V();
}
};
};
template<typename T, typename H = std::hash<T>, typename E = std::equal_to<T>, typename A = std::allocator<T> >
class bytell_hash_set
: public detailv8::sherwood_v8_table
<
T,
T,
H,
detailv8::functor_storage<size_t, H>,
E,
detailv8::functor_storage<bool, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<unsigned char>,
detailv8::CalculateBytellBlockSize<T>::value
>
{
using Table = detailv8::sherwood_v8_table
<
T,
T,
H,
detailv8::functor_storage<size_t, H>,
E,
detailv8::functor_storage<bool, E>,
A,
typename std::allocator_traits<A>::template rebind_alloc<unsigned char>,
detailv8::CalculateBytellBlockSize<T>::value
>;
public:
using key_type = T;
using Table::Table;
bytell_hash_set()
{
}
template<typename... Args>
std::pair<typename Table::iterator, bool> emplace(Args &&... args)
{
return Table::emplace(T(std::forward<Args>(args)...));
}
std::pair<typename Table::iterator, bool> emplace(const key_type & arg)
{
return Table::emplace(arg);
}
std::pair<typename Table::iterator, bool> emplace(key_type & arg)
{
return Table::emplace(arg);
}
std::pair<typename Table::iterator, bool> emplace(const key_type && arg)
{
return Table::emplace(std::move(arg));
}
std::pair<typename Table::iterator, bool> emplace(key_type && arg)
{
return Table::emplace(std::move(arg));
}
friend bool operator==(const bytell_hash_set & lhs, const bytell_hash_set & rhs)
{
if (lhs.size() != rhs.size())
return false;
for (const T & value : lhs)
{
if (rhs.find(value) == rhs.end())
return false;
}
return true;
}
friend bool operator!=(const bytell_hash_set & lhs, const bytell_hash_set & rhs)
{
return !(lhs == rhs);
}
};
} // end namespace ska
// START include/toolbelt/os/fs.hpp
// for mmap:
#include <fcntl.h>
#include <iostream>
#include <stdexcept>
#include <string_view>
#include <sys/mman.h>
#include <sys/stat.h>
namespace os::fs {
class MemoryMappedFile {
public:
explicit MemoryMappedFile(const std::string& filename) {
int fd = open(filename.c_str(), O_RDONLY); // NOLINT
if (fd == -1) throw std::logic_error("MemoryMappedFile: couldn't open file.");
// obtain file size
struct stat sbuf {};
if (fstat(fd, &sbuf) == -1) throw std::logic_error("MemoryMappedFile: cannot stat file size");
_filesize = sbuf.st_size;
_map = static_cast<const char*>(mmap(nullptr, _filesize, PROT_READ, MAP_PRIVATE, fd, 0U));
if (_map == MAP_FAILED) // NOLINT : doesn't work somehow?
throw std::logic_error("MemoryMappedFile: cannot map file");
}
~MemoryMappedFile() {
if (munmap(static_cast<void*>(const_cast<char*>(_map)), _filesize) == -1) // NOLINT
std::cerr << "Warnng: MemoryMappedFile: error in destructor during `munmap()`\n";
}
// no copies
MemoryMappedFile(const MemoryMappedFile& other) = delete;
MemoryMappedFile& operator=(MemoryMappedFile other) = delete;
// default moves
MemoryMappedFile(MemoryMappedFile&& other) = default;
MemoryMappedFile& operator=(MemoryMappedFile&& other) = default;
// char* pointers. up to callee to make string_views or strings
[[nodiscard]] const char* begin() const { return _map; }
[[nodiscard]] const char* end() const { return _map + _filesize; } // NOLINT
[[nodiscard]] std::string_view get_buffer() const {
return std::string_view{begin(), static_cast<std::size_t>(end() - begin())} ;
}
private:
size_t _filesize = 0;
const char* _map = nullptr;
};
} // namespace os::fs
// START include/toolbelt/os/str.hpp
#include <algorithm>
#include <cctype>
#include <charconv>
#include <functional>
#include <iostream>
#include <list>
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <vector>
namespace os::str {
namespace ascii {
inline constexpr bool isalpha(char c) { return (c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z'); }
inline constexpr bool isnumeric(char c) {
return (c >= '0' && c <= '9') || c == '+' || c == '-' || c == '.' || c == ',' || c == '^' ||
c == '*' || c == 'e' || c == 'E';
}
inline constexpr bool isspace(char c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == '\v' || c == '\f';
}
inline constexpr std::string_view spacechars() { return " \t\n\r\v\f"; }
inline constexpr bool isalphanum(char c) { return isalpha(c) || isnumeric(c) || isspace(c); }
inline constexpr char tolower(char c) {
constexpr auto offset = 'a' - 'A';
static_assert(offset % 2 == 0); // it's 32 == 0x20 == 1 << 5 in ASCII
return c | offset; // NOLINT - ignore warnings because < 128
}
inline constexpr char toupper(char c) { return c & ~('a' - 'A'); } // NOLINT - ignore warnings
} // namespace ascii
inline void ltrim(std::string& s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](char c) { return std::isspace(c) == 0; }));
}
inline void rtrim(std::string& s) {
s.erase(std::find_if(s.rbegin(), s.rend(), [](char c) { return std::isspace(c) == 0; }).base(),
s.end());
}
inline std::string lpad(const std::string& s, size_t size) {
return (s.size() < size) ? std::string(size - s.size(), ' ') + s : s;
}
inline std::string rpad(const std::string& s, size_t size) {
return (s.size() < size) ? s + std::string(size - s.size(), ' ') : s;
}
inline void tolower(std::string& s) {
std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) { return std::tolower(c); });
}
inline void toupper(std::string& s) {
std::transform(s.begin(), s.end(), s.begin(), [](unsigned char c) { return std::toupper(c); });
}
// clang-format off
inline void trim(std::string& s) { ltrim(s); rtrim(s); }
inline std::string ltrim_copy(std::string s) { ltrim(s); return s; }
inline std::string rtrim_copy(std::string s) { rtrim(s); return s; }
inline std::string trim_copy(std::string s) { trim(s); return s; }
inline std::string tolower_copy(std::string s) { tolower(s); return s; }
inline std::string toupper_copy(std::string s) { toupper(s); return s; }
// clang-format on
// std::string_view equivalents. different implementation, and "_copy" only because cheap
inline std::string_view ltrim(std::string_view sv,
std::string_view ignore_chars = ascii::spacechars()) {
sv.remove_prefix(std::min(sv.find_first_not_of(ignore_chars), sv.size()));
return sv;
}
inline std::string_view rtrim(std::string_view sv,
std::string_view ignore_chars = ascii::spacechars()) {
auto last = sv.find_last_not_of(ignore_chars);
if (last != std::string_view::npos) sv.remove_suffix(sv.size() - last - 1);
return sv;
}
inline std::string_view trim(std::string_view sv,
std::string_view ignore_chars = ascii::spacechars()) {
return ltrim(rtrim(sv, ignore_chars), ignore_chars);
}
// std::string_view equivalents. different implementation, and "_copy" only because cheap
template <typename UnaryPredicate>
std::string_view ltrim_if(std::string_view sv, UnaryPredicate ischar) {
auto first = std::find_if(sv.begin(), sv.end(), ischar);
if (first != sv.end()) sv.remove_prefix(first - sv.begin());
return sv;
}
template <typename UnaryPredicate>
std::string_view rtrim_if(std::string_view sv, UnaryPredicate ischar) {
auto last = find_if(sv.rbegin(), sv.rend(), ischar);
if (last != sv.rend()) sv.remove_suffix(sv.end() - last.base());
return sv;
}
template <typename UnaryPredicate>
std::string_view trim_if(std::string_view sv, UnaryPredicate ischar) {
return ltrim_if(rtrim_if(sv, ischar), ischar);
}
inline std::optional<std::string> trim_lower(std::string_view word) {
word = trim_if(word, ascii::isalpha);
if (!word.empty()) {
std::string output{word};
std::transform(output.begin(), output.end(), output.begin(),
[](auto c) { return ascii::tolower(c); });
return std::optional<std::string>{output};
}
return std::nullopt;
}
template <typename ActionFunction, typename Predicate = decltype(ascii::isalpha)>
void proc_words(std::string_view buffer, const ActionFunction& action,
const Predicate& pred = ascii::isalpha) {
const char* begin = buffer.begin();
const char* curr = begin;
const char* const end = buffer.end();
while (curr != end) {
if (!pred(*curr)) {
auto maybe_word =
trim_lower(std::string_view{&*begin, static_cast<std::size_t>(curr - begin)});
if (maybe_word) action(*maybe_word);
begin = std::next(curr);
}
std::advance(curr, 1);
}
}
template <typename T>
T from_chars(std::string_view sv) {
T val;
std::from_chars(sv.data(), sv.data() + sv.size(), val);
return val;
}
inline std::vector<std::string> split(const std::string& str, const std::string& delim) {
std::vector<std::string> result;
size_t pos = str.find(delim);
size_t start = 0;
while (pos != std::string::npos) {
result.emplace_back(str.begin() + start, str.begin() + pos);
start = pos + delim.size();
pos = str.find(delim, start);
}
if (start != str.size()) result.emplace_back(str.begin() + start, str.end());
return result;
}
template <typename InputIt>
std::ostream& join(std::ostream& stream, InputIt begin, InputIt end, const std::string& glue = ", ",
const std::string& term = "") {
if (begin == end) return stream << term;
stream << *begin;
++begin;
while (begin != end) {
stream << glue;
stream << *begin;
++begin;
}
return stream << term;
}
template <typename InputIt>
std::string join(InputIt begin, InputIt end, const std::string& glue = ", ",
const std::string& term = "") {
std::ostringstream ss;
join(ss, begin, end, glue, term);
return ss.str();
}
template <typename Container>
std::ostream& join(std::ostream& stream, Container cont, const std::string& glue = ", ",
const std::string& term = "") {
return join(stream, std::begin(cont), std::end(cont), glue, term);
}
template <typename Container>
std::string join(Container cont, const std::string& glue = ", ", const std::string& term = "") {
std::ostringstream ss;
join(ss, std::begin(cont), std::end(cont), glue, term);
return ss.str(); // can't call this on the rvalue above LWG#1203
}
} // namespace os::str
// START main code
#include <cstdint>
#include <iostream>
#include <string>
#include <string_view>
std::uint64_t yahtzee_upper(const std::string& filename) {
auto mfile = os::fs::MemoryMappedFile{filename};
auto max_total = std::uint64_t{0};
auto accum = ska::bytell_hash_map<std::uint64_t, std::uint64_t>{};
os::str::proc_words(
mfile.get_buffer(),
[&](std::string_view word) {
auto die = os::str::from_chars<std::uint64_t>(word);
auto total = accum[die] += die;
if (total > max_total) max_total = total;
},
os::str::ascii::isnumeric);
return max_total;
}
int main(int argc, char* argv[]) {
if (argc < 2) return 1;
std::cout << yahtzee_upper(argv[1]) << std::endl;
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment