public
Created

An implementation of PHP and Unix's `crypt` function in C#

  • Download Gist
ArrayPointer.cs
C#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace Test
{
public struct ArrayPointer<T>
{
T[] array;
long address;
 
public ArrayPointer(T[] array)
{
this.array = array;
this.address = 0;
}
 
public int Address
{
get
{
return (int)address;
}
 
set
{
address = value;
}
}
 
public long LongAddress
{
get
{
return address;
}
 
set
{
address = value;
}
}
 
public T Value
{
get
{
return this.array[this.address];
}
 
set
{
this.array[this.address] = value;
}
}
 
public int ArrayLength
{
get
{
return array.Length;
}
}
 
public long ArrayLongLength
{
get
{
return array.LongLength;
}
}
 
public T[] SourceArray
{
get
{
return this.array;
}
}
 
public T this[int index]
{
get
{
return this.array[this.address + index];
}
 
set
{
this.array[this.address + index] = value;
}
}
 
public override bool Equals(object obj)
{
return obj is ArrayPointer<T> && this == (ArrayPointer<T>)obj;
}
 
public override int GetHashCode()
{
return (int)address;
}
 
public static ArrayPointer<T> operator +(ArrayPointer<T> ap, int offset)
{
ArrayPointer<T> temp = new ArrayPointer<T>(ap.array);
temp.address = ap.address + offset;
return temp;
}
 
public static ArrayPointer<T> operator +(ArrayPointer<T> ap, long offset)
{
ArrayPointer<T> temp = new ArrayPointer<T>(ap.array);
temp.address = ap.address + offset;
return temp;
}
 
public static ArrayPointer<T> operator +(int offset, ArrayPointer<T> ap)
{
ArrayPointer<T> temp = new ArrayPointer<T>(ap.array);
temp.address = ap.address + offset;
return temp;
}
 
public static ArrayPointer<T> operator +(long offset, ArrayPointer<T> ap)
{
ArrayPointer<T> temp = new ArrayPointer<T>(ap.array);
temp.address = ap.address + offset;
return temp;
}
 
public static ArrayPointer<T> operator ++(ArrayPointer<T> ap)
{
ArrayPointer<T> temp = new ArrayPointer<T>(ap.array);
temp.address = ap.address + 1;
return temp;
}
 
public static ArrayPointer<T> operator --(ArrayPointer<T> ap)
{
ArrayPointer<T> temp = new ArrayPointer<T>(ap.array);
temp.address = ap.address - 1;
return temp;
}
 
public static bool operator ==(ArrayPointer<T> ap1, ArrayPointer<T> ap2)
{
return ap1.array == ap2.array && ap1.address == ap2.address;
}
 
public static bool operator !=(ArrayPointer<T> ap1, ArrayPointer<T> ap2)
{
return ap1.array != ap2.array || ap1.address != ap2.address;
}
}
}
Program.cs
C#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using System.Security.Cryptography;
using System.IO;
using System.Management;
 
namespace Test
{
class Program
{
static void Main(string[] args)
{
string[][] tests = new string[][] {
new string[] { "$1$saltstring", "Hello world!",
"$1$saltstri$YMyguxXMBpd2TEZ.vS/3q1" },
new string[] { "$1$RNiUbWrl$abtwFgZVKZbQhnnJ/iNns.", "codeman1",
"$1$RNiUbWrl$abtwFgZVKZbQhnnJ/iNns." },
new string[] { "$5$saltstring", "Hello world!",
"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" },
new string[] { "$5$rounds=77777$short", "we have a short salt string but not a short password",
"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" },
new string[] { "$5$rounds=10$roundstoolow", "the minimum number is still observed",
"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL972bIC" },
};
 
foreach (string[] test in tests)
{
string pass = test[1];
string salt = test[0];
 
string hash = crypt(pass, salt);
 
Console.WriteLine("Salt: " + salt);
Console.WriteLine("Pass: " + pass);
Console.WriteLine("Hash: " + hash);
Console.WriteLine("Test: " + test[2]);
Console.WriteLine();
}
 
Console.ReadKey(true);
}
 
public static string crypt(string key, string salt)
{
ArrayPointer<byte> key_ptr = new ArrayPointer<byte>(
Encoding.UTF8.GetBytes(key + "\0"));
 
ArrayPointer<byte> salt_ptr = new ArrayPointer<byte>(
Encoding.UTF8.GetBytes(salt + "\0"));
 
/* Try to find out whether we have to use MD5 encryption replacement. */
if (strncmp(md5_salt_prefix, salt_ptr, strlen(md5_salt_prefix)) == 0)
return ExtractString(__md5_crypt(key_ptr, salt_ptr));
 
/* Try to find out whether we have to use SHA256 encryption replacement. */
if (strncmp(sha256_salt_prefix, salt_ptr, strlen(sha256_salt_prefix)) == 0)
return ExtractString(__sha256_crypt(key_ptr, salt_ptr));
 
/* Try to find out whether we have to use SHA512 encryption replacement. */
//if (strncmp (sha512_salt_prefix, salt_ptr, strlen(sha512_salt_prefix)) == 0)
// return __sha512_crypt (key_ptr, salt_ptr);
 
//return __crypt_r (key_ptr, salt_ptr, &_ufc_foobar);
 
return string.Empty;
}
 
/* Table with characters for base64 transformation. */
static char[] b64t =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".ToCharArray();
 
/* Define our magic string to mark salt for MD5 "encryption"
replacement. This is meant to be the same as for other MD5 based
encryption implementations. */
static ArrayPointer<byte> md5_salt_prefix = new ArrayPointer<byte>(new byte[] { (byte)'$', (byte)'1', (byte)'$', 0 });
static ArrayPointer<byte> dollar_sign = new ArrayPointer<byte>(new byte[] { (byte)'$', 0 });
 
/* Define our magic string to mark salt for SHA256 "encryption"
replacement. */
static ArrayPointer<byte> sha256_salt_prefix = new ArrayPointer<byte>(new byte[] { (byte)'$', (byte)'5', (byte)'$', 0 });
 
/* Prefix for optional rounds specification. */
static ArrayPointer<byte> sha256_rounds_prefix = new ArrayPointer<byte>(new byte[] { (byte)'r', (byte)'o', (byte)'u', (byte)'n', (byte)'d', (byte)'s', (byte)'=', 0 });
 
/* Maximum salt string length. */
const int SALT_LEN_MAX = 16;
 
/* Default number of rounds if not explicitly specified. */
const int ROUNDS_DEFAULT = 5000;
 
/* Minimum number of rounds. */
const int ROUNDS_MIN = 1000;
 
/* Maximum number of rounds. */
const int ROUNDS_MAX = 999999999;
 
private static ArrayPointer<byte> __md5_crypt(ArrayPointer<byte> key, ArrayPointer<byte> salt)
{
/* We don't want to have an arbitrary limit in the size of the
password. We can compute the size of the result in advance and
so we can prepare the buffer we pass to `md5_crypt_r'. */
ArrayPointer<byte> buffer;
int buflen = 0;
int needed = 3 + strlen(salt) + 1 + 26 + 1;
 
ArrayPointer<byte> new_buffer = new ArrayPointer<byte>(new byte[needed]);
 
buffer = new_buffer;
buflen = needed;
 
return __md5_crypt_r(key, salt, buffer, buflen);
}
 
private static ArrayPointer<byte> __sha256_crypt(ArrayPointer<byte> key, ArrayPointer<byte> salt)
{
/* We don't want to have an arbitrary limit in the size of the
password. We can compute an upper bound for the size of the
result in advance and so we can prepare the buffer we pass to
`sha256_crypt_r'. */
ArrayPointer<byte> buffer;
int buflen = 0;
int needed = (strlen(sha256_salt_prefix)
+ strlen(sha256_rounds_prefix) + 1 + 9 + 1
+ strlen(salt) + 1 + 43 + 1);
 
ArrayPointer<byte> new_buffer = new ArrayPointer<byte>(new byte[needed]);
 
buffer = new_buffer;
buflen = needed;
 
return __sha256_crypt_r(key, salt, buffer, buflen);
}
 
public static int strlen(ArrayPointer<byte> str)
{
if(str == null)
{
return 0;
}
 
for(int i = 0; ; i++, str++)
{
if(str.Value == 0)
return i;
}
}
 
public static int strncmp(ArrayPointer<byte> str1, ArrayPointer<byte> str2, int length)
{
for(int i = 0; i < length; i++, str1++, str2++)
{
if(str1.Value > str2.Value)
{
return 1;
}
else if (str2.Value > str1.Value)
{
return -1;
}
}
 
return 0;
}
 
private static int strcspn(ArrayPointer<byte> str1, ArrayPointer<byte> str2)
{
int location = 0;
ArrayPointer<byte> i;
ArrayPointer<byte> j;
int str1_len = strlen(str1);
int str2_len = strlen(str2);
 
for(i = str1; i.Value != 0; i++, location++)
{
for(j = str2; j.Value != 0; j++)
{
if(i.Value == j.Value)
return location;
}
}
 
return str1_len;
}
 
private class md5_ctx
{
public MemoryStream stream;
}
 
private class sha256_ctx
{
public MemoryStream stream;
}
 
private static ArrayPointer<byte> __md5_crypt_r(ArrayPointer<byte> key, ArrayPointer<byte> salt, ArrayPointer<byte> buffer, int buflen)
{
ArrayPointer<byte> alt_result = new ArrayPointer<byte>(new byte[16]);
md5_ctx ctx = new md5_ctx();
md5_ctx alt_ctx = new md5_ctx();
int salt_len;
int key_len;
int cnt;
ArrayPointer<byte> cp;
ArrayPointer<byte> copied_key;
ArrayPointer<byte> copied_salt;
 
/* Find beginning of salt string. The prefix should normally always
be present. Just in case it is not. */
if (strncmp(md5_salt_prefix, salt, strlen(md5_salt_prefix)) == 0)
{
salt += strlen(md5_salt_prefix);
}
 
salt_len = Math.Min(strcspn(salt, dollar_sign), 8);
key_len = strlen(key);
 
byte[] temp = new byte[key.SourceArray.Length];
key.SourceArray.CopyTo(temp, 0);
copied_key = new ArrayPointer<byte>(temp);
copied_key.Address = key.Address;
key = copied_key;
 
temp = new byte[salt.SourceArray.Length];
salt.SourceArray.CopyTo(temp, 0);
copied_salt = new ArrayPointer<byte>(temp);
copied_salt.Address = salt.Address;
salt = copied_salt;
 
/* Prepare for the real work. */
__md5_init_ctx(ctx);
 
/* Add the key string. */
__md5_process_bytes(key, key_len, ctx);
 
/* Because the SALT argument need not always have the salt prefix we
add it separately. */
__md5_process_bytes(md5_salt_prefix, strlen(md5_salt_prefix), ctx);
 
/* The last part is the salt string. This must be at most 8
characters and it ends at the first `$' character (for
compatibility with existing implementations). */
__md5_process_bytes(salt, salt_len, ctx);
 
 
/* Compute alternate MD5 sum with input KEY, SALT, and KEY. The
final result will be added to the first context. */
__md5_init_ctx (alt_ctx);
 
/* Add key. */
__md5_process_bytes(key, key_len, alt_ctx);
 
/* Add salt. */
__md5_process_bytes(salt, salt_len, alt_ctx);
 
/* Add key again. */
__md5_process_bytes(key, key_len, alt_ctx);
 
/* Now get result of this (16 bytes) and add it to the other
context. */
__md5_finish_ctx(alt_ctx, alt_result);
 
/* Add for any character in the key one byte of the alternate sum. */
for (cnt = key_len; cnt > 16; cnt -= 16)
__md5_process_bytes (alt_result, 16, ctx);
__md5_process_bytes(alt_result, cnt, ctx);
 
/* For the following code we need a NUL byte. */
alt_result.Value = 0;
 
/* The original implementation now does something weird: for every 1
bit in the key the first 0 is added to the buffer, for every 0
bit the first character of the key. This does not seem to be
what was intended but we have to follow this to be compatible. */
for (cnt = key_len; cnt > 0; cnt >>= 1)
__md5_process_bytes((cnt & 1) != 0 ? alt_result : key, 1, ctx);
 
/* Create intermediate result. */
__md5_finish_ctx (ctx, alt_result);
 
/* Now comes another weirdness. In fear of password crackers here
comes a quite long loop which just processes the output of the
previous round again. We cannot ignore this here. */
for (cnt = 0; cnt < 1000; ++cnt)
{
/* New context. */
__md5_init_ctx (ctx);
 
/* Add key or last result. */
if ((cnt & 1) != 0)
__md5_process_bytes (key, key_len, ctx);
else
__md5_process_bytes (alt_result, 16, ctx);
 
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
__md5_process_bytes (salt, salt_len, ctx);
 
/* Add key for numbers not divisible by 7. */
if (cnt % 7 != 0)
__md5_process_bytes (key, key_len, ctx);
 
/* Add key or last result. */
if ((cnt & 1) != 0)
__md5_process_bytes (alt_result, 16, ctx);
else
__md5_process_bytes (key, key_len, ctx);
 
/* Create intermediate result. */
__md5_finish_ctx (ctx, alt_result);
}
 
/* Now we can construct the result string. It consists of three
parts. */
cp = __stpncpy(buffer, md5_salt_prefix, Math.Max(0, buflen));
buflen -= strlen(md5_salt_prefix);
 
cp = __stpncpy (cp, salt, Math.Min(Math.Max(0, buflen), salt_len));
buflen -= Math.Min(Math.Max(0, buflen), salt_len);
 
if (buflen > 0)
{
cp.Value = (byte)'$';
cp++;
buflen--;
}
 
cp = b64_from_24bit(alt_result[0], alt_result[6], alt_result[12], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[1], alt_result[7], alt_result[13], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[2], alt_result[8], alt_result[14], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[3], alt_result[9], alt_result[15], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[4], alt_result[10], alt_result[5], 4, cp, buflen, out buflen);
cp = b64_from_24bit(0, 0, alt_result[11], 2, cp, buflen, out buflen);
 
if (buflen <= 0)
{
throw new IndexOutOfRangeException();
}
else
cp.Value = 0; /* Terminate the string. */
 
/* Clear the buffer for the intermediate result so that people
attaching to processes or reading core dumps cannot get any
information. We do it in this way to clear correct_words[]
inside the MD5 implementation as well. */
__md5_init_ctx(ctx);
__md5_finish_ctx(ctx, alt_result);
 
return buffer;
}
 
private static ArrayPointer<byte> __sha256_crypt_r(ArrayPointer<byte> key, ArrayPointer<byte> salt, ArrayPointer<byte> buffer, int buflen)
{
ArrayPointer<byte> alt_result = new ArrayPointer<byte>(new byte[32]);
ArrayPointer<byte> temp_result = new ArrayPointer<byte>(new byte[32]);
sha256_ctx ctx = new sha256_ctx();
sha256_ctx alt_ctx = new sha256_ctx();
int salt_len;
int key_len;
int cnt;
ArrayPointer<byte> cp;
ArrayPointer<byte> copied_key;
ArrayPointer<byte> copied_salt;
ArrayPointer<byte> p_bytes;
ArrayPointer<byte> s_bytes;
/* Default number of rounds. */
int rounds = ROUNDS_DEFAULT;
bool rounds_custom = false;
 
/* Find beginning of salt string. The prefix should normally always
be present. Just in case it is not. */
if (strncmp(sha256_salt_prefix, salt, strlen(sha256_salt_prefix)) == 0)
/* Skip salt prefix. */
salt += strlen(sha256_salt_prefix);
 
if (strncmp(salt, sha256_rounds_prefix, strlen(sha256_rounds_prefix)) == 0)
{
ArrayPointer<byte> num = salt + strlen(sha256_rounds_prefix);
ArrayPointer<byte> endp;
ulong srounds = strtoul(num, out endp, 10);
if (endp.Value == (byte)'$')
{
salt = endp + 1;
rounds = (int)Math.Max(ROUNDS_MIN, Math.Min(srounds, ROUNDS_MAX));
rounds_custom = true;
}
}
 
salt_len = Math.Min(strcspn(salt, dollar_sign), SALT_LEN_MAX);
key_len = strlen(key);
 
byte[] temp = new byte[key.SourceArray.Length];
key.SourceArray.CopyTo(temp, 0);
copied_key = new ArrayPointer<byte>(temp);
copied_key.Address = key.Address;
key = copied_key;
 
temp = new byte[salt.SourceArray.Length];
salt.SourceArray.CopyTo(temp, 0);
copied_salt = new ArrayPointer<byte>(temp);
copied_salt.Address = salt.Address;
salt = copied_salt;
 
/* Prepare for the real work. */
__sha256_init_ctx(ctx);
 
/* Add the key string. */
__sha256_process_bytes(key, key_len, ctx);
 
/* The last part is the salt string. This must be at most 16
characters and it ends at the first `$' character. */
__sha256_process_bytes(salt, salt_len, ctx);
 
 
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
final result will be added to the first context. */
__sha256_init_ctx(alt_ctx);
 
/* Add key. */
__sha256_process_bytes(key, key_len, alt_ctx);
 
/* Add salt. */
__sha256_process_bytes(salt, salt_len, alt_ctx);
 
/* Add key again. */
__sha256_process_bytes(key, key_len, alt_ctx);
 
/* Now get result of this (32 bytes) and add it to the other
context. */
__sha256_finish_ctx(alt_ctx, alt_result);
 
/* Add for any character in the key one byte of the alternate sum. */
for (cnt = key_len; cnt > 32; cnt -= 32)
__sha256_process_bytes(alt_result, 32, ctx);
__sha256_process_bytes(alt_result, cnt, ctx);
 
/* Take the binary representation of the length of the key and for every
1 add the alternate sum, for every 0 the key. */
for (cnt = key_len; cnt > 0; cnt >>= 1)
if ((cnt & 1) != 0)
__sha256_process_bytes(alt_result, 32, ctx);
else
__sha256_process_bytes(key, key_len, ctx);
 
/* Create intermediate result. */
__sha256_finish_ctx(ctx, alt_result);
 
/* Start computation of P byte sequence. */
__sha256_init_ctx(alt_ctx);
 
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < key_len; ++cnt)
__sha256_process_bytes(key, key_len, alt_ctx);
 
/* Finish the digest. */
__sha256_finish_ctx(alt_ctx, temp_result);
 
/* Create byte sequence P. */
cp = p_bytes = new ArrayPointer<byte>(new byte[key_len]);
for (cnt = key_len; cnt >= 32; cnt -= 32)
cp = mempcpy(cp, temp_result, 32);
memcpy(cp, temp_result, cnt);
 
/* Start computation of S byte sequence. */
__sha256_init_ctx(alt_ctx);
 
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
__sha256_process_bytes(salt, salt_len, alt_ctx);
 
/* Finish the digest. */
__sha256_finish_ctx(alt_ctx, temp_result);
 
/* Create byte sequence S. */
cp = s_bytes = new ArrayPointer<byte>(new byte[salt_len]);
for (cnt = salt_len; cnt >= 32; cnt -= 32)
cp = mempcpy(cp, temp_result, 32);
memcpy(cp, temp_result, cnt);
 
/* Repeatedly run the collected hash value through SHA256 to burn
CPU cycles. */
for (cnt = 0; cnt < rounds; ++cnt)
{
/* New context. */
__sha256_init_ctx(ctx);
 
/* Add key or last result. */
if ((cnt & 1) != 0)
__sha256_process_bytes(p_bytes, key_len, ctx);
else
__sha256_process_bytes(alt_result, 32, ctx);
 
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
__sha256_process_bytes(s_bytes, salt_len, ctx);
 
/* Add key for numbers not divisible by 7. */
if (cnt % 7 != 0)
__sha256_process_bytes(p_bytes, key_len, ctx);
 
/* Add key or last result. */
if ((cnt & 1) != 0)
__sha256_process_bytes(alt_result, 32, ctx);
else
__sha256_process_bytes(p_bytes, key_len, ctx);
 
/* Create intermediate result. */
__sha256_finish_ctx(ctx, alt_result);
}
 
/* Now we can construct the result string. It consists of three
parts. */
cp = __stpncpy(buffer, sha256_salt_prefix, Math.Max(0, buflen));
buflen -= strlen(sha256_salt_prefix);
 
if (rounds_custom)
{
cp = __stpncpy(cp, sha256_rounds_prefix, Math.Max(0, buflen));
buflen -= strlen(sha256_rounds_prefix);
 
char[] temp1 = (rounds.ToString() + "$\0").ToCharArray();
byte[] temp2 = new byte[temp1.Length];
for(int i = 0; i < temp1.Length; i++) temp2[i] = (byte)temp1[i];
ArrayPointer<byte> temp3 = new ArrayPointer<byte>(temp2);
 
cp = __stpncpy(cp, temp3, Math.Max(0, buflen));
buflen -= strlen(temp3);
}
 
cp = __stpncpy(cp, salt, Math.Min(Math.Max(0, buflen), salt_len));
buflen -= Math.Min(Math.Max(0, buflen), salt_len);
 
if (buflen > 0)
{
cp.Value = (byte)'$';
cp++;
buflen--;
}
 
cp = b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, cp, buflen, out buflen);
cp = b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, cp, buflen, out buflen);
cp = b64_from_24bit(0, alt_result[31], alt_result[30], 3, cp, buflen, out buflen);
if (buflen <= 0)
{
throw new IndexOutOfRangeException();
}
else
cp.Value = 0; /* Terminate the string. */
 
/* Clear the buffer for the intermediate result so that people
attaching to processes or reading core dumps cannot get any
information. We do it in this way to clear correct_words[]
inside the SHA256 implementation as well. */
__sha256_init_ctx(ctx);
__sha256_finish_ctx(ctx, alt_result);
 
 
return buffer;
}
 
private static ArrayPointer<byte> memcpy(ArrayPointer<byte> dest, ArrayPointer<byte> src, int n)
{
for (int i = 0; i < n; i++)
{
dest[i] = src[i];
}
 
return dest;
}
 
private static ArrayPointer<byte> mempcpy(ArrayPointer<byte> dest, ArrayPointer<byte> src, int n)
{
for (int i = 0; i < n; i++)
{
dest[i] = src[i];
}
 
return dest + n;
}
 
private static ulong strtoul(ArrayPointer<byte> str, out ArrayPointer<byte> endptr, int numberbase)
{
if (numberbase != 10) throw new ArgumentOutOfRangeException("numberbase");
 
string num = "";
for (int i = 0; str.Value >= '0' && str.Value <= '9'; i++, str++)
{
num += (char)str.Value;
}
 
endptr = str;
 
ulong value = 0;
ulong.TryParse(num, out value);
 
return value;
}
 
private static ArrayPointer<byte> b64_from_24bit(uint B2, uint B1, uint B0, int N, ArrayPointer<byte> cp, int buflen, out int buflen_out)
{
uint w = ((B2) << 16) | ((B1) << 8) | (B0);
int n = (N);
while (n-- > 0 && buflen > 0)
{
cp.Value = (byte)b64t[w & 0x3f];
cp++;
buflen--;
w >>= 6;
}
buflen_out = buflen;
return cp;
}
 
private static void __md5_init_ctx(md5_ctx ctx)
{
ctx.stream = new MemoryStream();
}
 
private static void __md5_process_bytes(ArrayPointer<byte> buffer, int count, md5_ctx ctx)
{
ctx.stream.Write(buffer.SourceArray, buffer.Address, count);
}
 
private static void __md5_finish_ctx(md5_ctx ctx, ArrayPointer<byte> buffer)
{
byte[] temp = new byte[ctx.stream.Length];
ctx.stream.Seek(0, SeekOrigin.Begin);
ctx.stream.Read(temp, 0, temp.Length);
temp = MD5.Create().ComputeHash(temp);
 
for (int i = 0; i < temp.Length; i++, buffer++)
{
buffer.Value = temp[i];
}
}
 
private static void __sha256_init_ctx(sha256_ctx ctx)
{
ctx.stream = new MemoryStream();
}
 
private static void __sha256_process_bytes(ArrayPointer<byte> buffer, int count, sha256_ctx ctx)
{
ctx.stream.Write(buffer.SourceArray, buffer.Address, count);
}
 
private static void __sha256_finish_ctx(sha256_ctx ctx, ArrayPointer<byte> buffer)
{
byte[] temp = new byte[ctx.stream.Length];
ctx.stream.Seek(0, SeekOrigin.Begin);
ctx.stream.Read(temp, 0, temp.Length);
 
temp = SHA256.Create().ComputeHash(temp);
 
for (int i = 0; i < temp.Length; i++, buffer++)
{
buffer.Value = temp[i];
}
}
 
private static ArrayPointer<byte> __stpncpy(ArrayPointer<byte> buffer, ArrayPointer<byte> source, int max)
{
int i;
 
for (i = 0; i < max; i++, buffer++)
{
if (source[i] == 0)
{
break;
}
 
buffer.Value = source[i];
}
return buffer;
}
 
private static string ExtractString(ArrayPointer<byte> str)
{
StringBuilder sb = new StringBuilder(strlen(str));
 
for (int i = 0; ; i++)
{
if (str[i] == 0)
break;
sb.Append((char)str[i]);
}
 
return sb.ToString();
}
}
}

Thanks a lot for this! I took your code and created a simple lib and hosted it at https://github.com/ahall/PasswordSharp. I added sha-512 to it,

Please sign in to comment on this gist.

Something went wrong with that request. Please try again.