Created
May 23, 2019 22:38
-
-
Save ozgurshn/e6eeb69238be0ba21582b61f1dfe1b87 to your computer and use it in GitHub Desktop.
iOS Vision view controller with scene stability
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
See LICENSE folder for this sample’s licensing information. | |
Abstract: | |
Implements the Vision view controller. | |
*/ | |
import UIKit | |
import AVFoundation | |
import Vision | |
class VisionViewController: ViewController { | |
private var detectionOverlay: CALayer! = nil | |
// Vision parts | |
private var analysisRequests = [VNRequest]() | |
private let sequenceRequestHandler = VNSequenceRequestHandler() | |
// Registration history | |
private let maximumHistoryLength = 15 | |
private var transpositionHistoryPoints: [CGPoint] = [ ] | |
private var previousPixelBuffer: CVPixelBuffer? | |
// The current pixel buffer undergoing analysis. Run requests in a serial fashion, one after another. | |
private var currentlyAnalyzedPixelBuffer: CVPixelBuffer? | |
// Queue for dispatching vision classification and barcode requests | |
private let visionQueue = DispatchQueue(label: "com.example.apple-samplecode.FlowerShop.serialVisionQueue") | |
var productViewOpen = false | |
fileprivate func showProductInfo(_ identifier: String) { | |
// Perform all UI updates on the main queue. | |
DispatchQueue.main.async(execute: { | |
if self.productViewOpen { | |
// Bail out early if another observation already opened the product display. | |
return | |
} | |
self.productViewOpen = true | |
self.performSegue(withIdentifier: "showProductSegue", sender: identifier) | |
}) | |
} | |
/// - Tag: SetupVisionRequest | |
@discardableResult | |
func setupVision() -> NSError? { | |
// Setup Vision parts. | |
let error: NSError! = nil | |
// Setup barcode detection. | |
let barcodeDetection = VNDetectBarcodesRequest(completionHandler: { (request, error) in | |
if let results = request.results as? [VNBarcodeObservation] { | |
if let mainBarcode = results.first { | |
if let payloadString = mainBarcode.payloadStringValue { | |
self.showProductInfo(payloadString) | |
} | |
} | |
} | |
}) | |
self.analysisRequests = ([barcodeDetection]) | |
// Setup a classification request. | |
guard let modelURL = Bundle.main.url(forResource: "FlowerShop", withExtension: "mlmodelc") else { | |
return NSError(domain: "VisionViewController", code: -1, userInfo: [NSLocalizedDescriptionKey: "The model file is missing."]) | |
} | |
guard let objectRecognition = createClassificationRequest(modelURL: modelURL) else { | |
return NSError(domain: "VisionViewController", code: -1, userInfo: [NSLocalizedDescriptionKey: "The classification request failed."]) | |
} | |
self.analysisRequests.append(objectRecognition) | |
return error | |
} | |
private func createClassificationRequest(modelURL: URL) -> VNCoreMLRequest? { | |
do { | |
let objectClassifier = try VNCoreMLModel(for: MLModel(contentsOf: modelURL)) | |
let classificationRequest = VNCoreMLRequest(model: objectClassifier, completionHandler: { (request, error) in | |
if let results = request.results as? [VNClassificationObservation] { | |
print("\(results.first!.identifier) : \(results.first!.confidence)") | |
if results.first!.confidence > 0.9 { | |
self.showProductInfo(results.first!.identifier) | |
} | |
} | |
}) | |
return classificationRequest | |
} catch let error as NSError { | |
print("Model failed to load: \(error).") | |
return nil | |
} | |
} | |
/// - Tag: AnalyzeImage | |
private func analyzeCurrentImage() { | |
// Most computer vision tasks are not rotation-agnostic, so it is important to pass in the orientation of the image with respect to device. | |
let orientation = exifOrientationFromDeviceOrientation() | |
let requestHandler = VNImageRequestHandler(cvPixelBuffer: currentlyAnalyzedPixelBuffer!, orientation: orientation) | |
visionQueue.async { | |
do { | |
// Release the pixel buffer when done, allowing the next buffer to be processed. | |
defer { self.currentlyAnalyzedPixelBuffer = nil } | |
try requestHandler.perform(self.analysisRequests) | |
} catch { | |
print("Error: Vision request failed with error \"\(error)\"") | |
} | |
} | |
} | |
fileprivate func resetTranspositionHistory() { | |
transpositionHistoryPoints.removeAll() | |
} | |
fileprivate func recordTransposition(_ point: CGPoint) { | |
transpositionHistoryPoints.append(point) | |
if transpositionHistoryPoints.count > maximumHistoryLength { | |
transpositionHistoryPoints.removeFirst() | |
} | |
} | |
/// - Tag: CheckSceneStability | |
fileprivate func sceneStabilityAchieved() -> Bool { | |
// Determine if we have enough evidence of stability. | |
if transpositionHistoryPoints.count == maximumHistoryLength { | |
// Calculate the moving average. | |
var movingAverage: CGPoint = CGPoint.zero | |
for currentPoint in transpositionHistoryPoints { | |
movingAverage.x += currentPoint.x | |
movingAverage.y += currentPoint.y | |
} | |
let distance = abs(movingAverage.x) + abs(movingAverage.y) | |
if distance < 20 { | |
return true | |
} | |
} | |
return false | |
} | |
override func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) { | |
guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { | |
return | |
} | |
guard previousPixelBuffer != nil else { | |
previousPixelBuffer = pixelBuffer | |
self.resetTranspositionHistory() | |
return | |
} | |
if productViewOpen { | |
return | |
} | |
let registrationRequest = VNTranslationalImageRegistrationRequest(targetedCVPixelBuffer: pixelBuffer) | |
do { | |
try sequenceRequestHandler.perform([ registrationRequest ], on: previousPixelBuffer!) | |
} catch let error as NSError { | |
print("Failed to process request: \(error.localizedDescription).") | |
return | |
} | |
previousPixelBuffer = pixelBuffer | |
if let results = registrationRequest.results { | |
if let alignmentObservation = results.first as? VNImageTranslationAlignmentObservation { | |
let alignmentTransform = alignmentObservation.alignmentTransform | |
self.recordTransposition(CGPoint(x: alignmentTransform.tx, y: alignmentTransform.ty)) | |
} | |
} | |
if self.sceneStabilityAchieved() { | |
showDetectionOverlay(true) | |
if currentlyAnalyzedPixelBuffer == nil { | |
// Retain the image buffer for Vision processing. | |
currentlyAnalyzedPixelBuffer = pixelBuffer | |
analyzeCurrentImage() | |
} | |
} else { | |
showDetectionOverlay(false) | |
} | |
} | |
private func showDetectionOverlay(_ visible: Bool) { | |
DispatchQueue.main.async(execute: { | |
// perform all the UI updates on the main queue | |
self.detectionOverlay.isHidden = !visible | |
}) | |
} | |
override func setupAVCapture() { | |
super.setupAVCapture() | |
// setup Vision parts | |
setupLayers() | |
setupVision() | |
// start the capture | |
startCaptureSession() | |
} | |
func setupLayers() { | |
detectionOverlay = CALayer() | |
detectionOverlay.bounds = self.view.bounds.insetBy(dx: 20, dy: 20) | |
detectionOverlay.position = CGPoint(x: self.view.bounds.midX, y: self.view.bounds.midY) | |
detectionOverlay.borderColor = CGColor(colorSpace: CGColorSpaceCreateDeviceRGB(), components: [1.0, 1.0, 0.2, 0.7]) | |
detectionOverlay.borderWidth = 8 | |
detectionOverlay.cornerRadius = 20 | |
detectionOverlay.isHidden = true | |
rootLayer.addSublayer(detectionOverlay) | |
} | |
@IBAction func unwindToScanning(unwindSegue: UIStoryboardSegue) { | |
productViewOpen = false | |
self.resetTranspositionHistory() // reset scene stability | |
} | |
override func prepare(for segue: UIStoryboardSegue, sender: Any?) { | |
if let productVC = segue.destination as? ProductViewController, segue.identifier == "showProductSegue" { | |
if let productID = sender as? String { | |
productVC.productID = productID | |
} | |
} | |
} | |
} |
I don't remember this but I presented working copy here in this blog post https://heartbeat.fritz.ai/how-to-capture-the-best-frame-in-an-ios-image-processing-app-5a14829a03f1
I' m very new in developing apps. Is there a camera function build in the code already? So i only need to add a preview to my main..storyboard?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Does it work as is?