Last active
August 29, 2015 14:25
-
-
Save pabloferz/dbaa72c852c7aae68624 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#==============================================================================# | |
# Optimized Sieve of Atkin | |
#==============================================================================# | |
function atkin(n::Int) | |
s = zeros(Bool, n < 2 ? 0 : n) | |
n < 2 && return s; s[2] = true | |
n < 3 && return s; s[3] = true | |
for x = 1:floor(Int,sqrt(n/4)) | |
j = 4 * x * x | |
y, Δy = 1, 2 | |
if x % 3 == 0 | |
while (k = j + y * y) ≤ n # k = 4x² + y² | |
@inbounds s[k] = !s[k] | |
Δy $= 6; y += Δy | |
end | |
else | |
while (k = j + y * y) ≤ n | |
@inbounds s[k] = !s[k] | |
y += 2 | |
end | |
end | |
end | |
for x=1:2:floor(Int,sqrt(n/3)) | |
j = 3 * x * x | |
y, Δy = 2, 4 | |
while (k = j + y * y) ≤ n # k = 3x² + y² | |
@inbounds s[k] = !s[k] | |
Δy $= 6; y += Δy | |
end | |
end | |
for x = 1:floor(Int,sqrt(n/2)) | |
j = 3 * x * x | |
y, Δy = ifelse(x % 2 == 0, (1, 2), (2, 4)) | |
while x > y | |
(k = j - y * y) ≤ n && (@inbounds s[k] = !s[k]) # k = 3x² - y² | |
Δy $= 6; y += Δy | |
end | |
end | |
@inbounds for p = 5:isqrt(n) | |
if s[p]; for j = p*p:2p*p:n; s[j] = false; end; end | |
end | |
return s | |
end | |
# Smallest multiple of k that is greater than or equal to both k and l | |
@inline smallestmultiple(k::Int, l::Int) = ifelse(k ≥ l, k, k * ceil(Int, l / k)) | |
function atkin(lo::Int, hi::Int) | |
lo ≤ hi || throw(ArgumentError("the condition lo ≤ hi must be met")) | |
lo < 2 && return atkin(hi) | |
n = hi - lo + 1 | |
s = zeros(Bool, n) | |
smallprimes = primes(isqrt(hi)) | |
lo ≤ 2 ≤ hi && (s[3-lo] = true) | |
lo ≤ 3 ≤ hi && (s[4-lo] = true) | |
for x = 1:floor(Int,sqrt(hi/4)) | |
j = 4 * x * x | |
y, Δy = 1, 2 | |
if j < lo | |
y = 2 * ceil(Int, (sqrt(lo - j) - 1) / 2) + 1 | |
end | |
if x % 3 == 0 | |
if y % 3 != 1; Δy = 4; if y % 3 == 0; y += 2; end; end | |
while (k = j + y * y - lo + 1) ≤ n # k + lo - 1 = 4x² + y² | |
@inbounds s[k] = !s[k] | |
Δy $= 6; y += Δy | |
end | |
else | |
while (k = j + y * y - lo + 1) ≤ n | |
@inbounds s[k] = !s[k] | |
y += 2 | |
end | |
end | |
end | |
for x = 1:2:floor(Int,sqrt(hi/3)) | |
j = 3 * x * x | |
y, Δy = 2, 4 | |
if j < lo | |
y = 2 * ceil(Int, sqrt(lo - j) / 2) | |
if y % 3 == 0; y += 2; elseif y % 3 == 1; Δy = 2; end | |
end | |
while (k = j + y * y - lo + 1) ≤ n # k = 3x² + y² | |
@inbounds s[k] = !s[k] | |
Δy $= 6; y += Δy | |
end | |
end | |
for x = 1:floor(Int,sqrt(hi/2)) | |
j = 3 * x * x | |
y, Δy = ifelse(x % 2 == 0, (1, 2), (2, 4)) | |
while x > y | |
0 < (k = j - y * y - lo + 1) ≤ n && (@inbounds s[k] = !s[k]) | |
Δy $= 6; y += Δy | |
end | |
end | |
@inbounds for i = 3:length(smallprimes) | |
p = smallprimes[i] | |
for j = smallestmultiple(p*p,lo)-lo+1:p*p:n; s[j] = false; end | |
end | |
return s | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment