Last active
November 14, 2017 02:04
-
-
Save paced/097e457ac4b691e5623e504373f90dde to your computer and use it in GitHub Desktop.
Decryption with C, p, q, dp, and dq for RSA's Chinese Remainder Theorem.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Decrypt RSA using the Chinese Remainder Theorem.""" | |
C = 95272795986475189505518980251137003509292621140166383887854853863720692420204142448424074834657149326853553097626486371206617513769930277580823116437975487148956107509247564965652417450550680181691869432067892028368985007229633943149091684419834136214793476910417359537696632874045272326665036717324623992885 | |
p = 11387480584909854985125335848240384226653929942757756384489381242206157197986555243995335158328781970310603060671486688856263776452654268043936036556215243 | |
q = 12972222875218086547425818961477257915105515705982283726851833508079600460542479267972050216838604649742870515200462359007315431848784163790312424462439629 | |
dp = 8191957726161111880866028229950166742224147653136894248088678244548815086744810656765529876284622829884409590596114090872889522887052772791407131880103961 | |
dq = 3570695757580148093370242608506191464756425954703930236924583065811730548932270595568088372441809535917032142349986828862994856575730078580414026791444659 | |
def egcd(a, b): | |
if a == 0: | |
return (b, 0, 1) | |
else: | |
g, y, x = egcd(b % a, a) | |
return (g, x - (b // a) * y, y) | |
def modinv(a, m): | |
g, x, y = egcd(a, m) | |
if g != 1: | |
raise Exception('modular inverse does not exist') | |
else: | |
return x % m | |
def int2Text(number, size): | |
text = "".join([chr((number >> j) & 0xff) | |
for j in reversed(range(0, size << 3, 8))]) | |
return text.lstrip("\x00") | |
qinv = modinv(q, p) | |
m1 = pow(C, dp, p) # (C ** dp) % p | |
m2 = pow(C, dp, p) # (C ** dq) % q | |
h = ((m1 - m2) * qinv) % p | |
y = m2 + (q * h) | |
print int2Text(y, 100) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment