Skip to content

Instantly share code, notes, and snippets.

@paldepind
Last active October 3, 2020 17:09
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save paldepind/d085ba6f7512fee655f7e65e174f8e33 to your computer and use it in GitHub Desktop.
Save paldepind/d085ba6f7512fee655f7e65e174f8e33 to your computer and use it in GitHub Desktop.
Positive fractions where 1 = 1/2 + 1/2 holds by reflexivity.
From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option numbers.
(* Strictly positive rationals *)
(* Positive fractions. *)
Record Qpos : Set := mk_Qpos {
Qpos_num : positive;
Qpos_den : positive
}.
(* Reduce a fraction. *)
Definition Qpos_red (q : Qpos) : Qpos :=
let (q1,q2) := q in
let (r1,r2) := snd (Z.ggcd (Zpos q1) (Zpos q2))
in mk_Qpos (Z.to_pos r1) (Z.to_pos r2).
(* A strictly positive rational is a reduced positive fraction. *)
Record Qp : Set := MkQp { Qp_car : Qpos; Qp_canon : Qpos_red Qp_car = Qp_car }.
Delimit Scope Qp_scope with Qp.
Bind Scope Qp_scope with Qp.
Open Scope Qp.
Compute (1%Qc).
Compute (1/2 + 1/2)%Qc.
Notation "a # b" := (mk_Qpos a b) (at level 55, no associativity) : Qp_scope.
(* Operations for Qpos *)
Definition Qpos_plus (x y : Qpos) :=
(Qpos_num x * Qpos_den y + Qpos_num y * Qpos_den x) # (Qpos_den x * Qpos_den y).
Definition Qpos_mult (x y : Qpos) := (Qpos_num x * Qpos_num y) # (Qpos_den x * Qpos_den y).
Definition Qpos_inv (x : Qpos) := Qpos_den x # Qpos_num x.
(* Results about Qpos_red. *)
Lemma Qpos_red_involutive : ∀ q : Qpos, Qpos_red (Qpos_red q) = Qpos_red q.
Proof. Admitted.
(* NOTE: [q] is reduced twice!! *)
Definition mk_Qp (q : Qpos) :=
MkQp (Qpos_red (Qpos_red q)) (Qpos_red_involutive (Qpos_red q)).
(* Note that with this definition (similar to how Qc is defined in Qcanon would
make the proof of `Qp_one_half_plus_hafl` below fail:
MkQp (Qpos_red q) (Qpos_red_involutive q). *)
Definition Qp_plus (x y : Qp) := mk_Qp (Qpos_plus (Qp_car x) (Qp_car y)).
Definition Qp_mult (x y : Qp) := mk_Qp (Qpos_mult (Qp_car x) (Qp_car y)).
Definition Qp_inv (x : Qp) := mk_Qp (Qpos_inv (Qp_car x)).
Definition Qp_div (x y : Qp) := Qp_mult x (Qp_inv y).
Definition Qp_one : Qp := mk_Qp (1 # 1).
Infix "+" := Qp_plus : Qp_scope.
Infix "*" := Qp_mult : Qp_scope.
Infix "/" := Qp_div : Qp_scope.
Notation "1" := Qp_one : Qp_scope.
Notation "2" := (1 + 1)%Qp : Qp_scope.
Compute 1%Qp.
Compute ((1 / 2) + (1 / 2))%Qp.
Lemma Qp_one_half_plus_hafl : 1 = (1 / 2) + (1 / 2).
Proof. reflexivity. Qed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment