Skip to content

Instantly share code, notes, and snippets.

@palmskog
Last active August 6, 2019 16:09
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save palmskog/1384a0bcceb6c55d3f1126422d6fbb7f to your computer and use it in GitHub Desktop.
Save palmskog/1384a0bcceb6c55d3f1126422d6fbb7f to your computer and use it in GitHub Desktop.
polydiv BiRNNLMwCL
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype bigop ssralg poly.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
Local Open Scope ring_scope.
Reserved Notation "p %= q" (at level 70, no associativity).
Local Notation simp := Monoid.simpm.
Module Pdiv.
Module CommonRing.
Section RingPseudoDivision.
Variable R : ringType.
Implicit Types d p q r : {poly R}.
Definition redivp_rec (q : {poly R}) :=
let sq := size q in
let cq := lead_coef q in
fix loop (k : nat) (qq r : {poly R}) (n : nat) {struct n} :=
if size r < sq then (k, qq, r) else
let m := (lead_coef r) *: 'X^(size r - sq) in
let qq1 := qq * cq%:P + m in
let r1 := r * cq%:P - m * q in
if n is n1.+1 then loop k.+1 qq1 r1 n1 else (k.+1, qq1, r1).
Definition redivp_expanded_def p q :=
if q == 0 then (0%N, 0, p) else redivp_rec q 0 0 p (size p).
Fact redivp_key : unit.
Proof. by []. Qed.
Definition redivp : {poly R} -> {poly R} -> nat * {poly R} * {poly R} :=
locked_with redivp_key redivp_expanded_def.
Canonical redivp_unlockable := [unlockable fun redivp].
Definition rdivp p q := ((redivp p q).1).2.
Definition rmodp p q := (redivp p q).2.
Definition rscalp p q := ((redivp p q).1).1.
Definition rdvdp p q := rmodp q p == 0.
Lemma redivp_def p q : redivp p q = (rscalp p q, rdivp p q, rmodp p q).
Proof.
by rewrite /rscalp /rdivp /rmodp; case: (redivp p q) => [[]] /=. Qed.
Lemma rdiv0p p : rdivp 0 p = 0.
Proof.
rewrite /rdivp unlock; case: ifP => // Hp; rewrite /redivp_rec !size_poly0.
by rewrite polySpred ?Hp. Qed.
Lemma rdivp0 p : rdivp p 0 = 0.
Proof. by rewrite /rdivp unlock eqxx. Qed.
Lemma rdivp_small p q : size p < size q -> rdivp p q = 0.
Proof.
rewrite /rdivp unlock; have [-> | _ ltpq] := eqP; first by rewrite size_poly0.
by case: (size p) => [|s]; rewrite /= ltpq. Qed.
Lemma leq_rdivp p q : size (rdivp p q) <= size p.
Proof.
have [/rdivp_small->|] := ltnP (size p) (size q); first by rewrite size_poly0.
rewrite /rdivp /rmodp /rscalp unlock.
case q0: (q == 0) => /=; first by rewrite size_poly0.
have: size (0 : {poly R}) <= size p by rewrite size_poly0.
move: (leqnn (size p)); move: {2 3 4 6}(size p) => A.
elim: (size p) 0%N (0 : {poly R}) {1 3 4}p (leqnn (size p)) => [|n ihn] k q1 r.
by move/size_poly_leq0P->; rewrite /= size_poly0 lt0n size_poly_eq0 q0.
move=> /= hrn hr hq1 hq; case: ltnP => //= hqr.
have sq: 0 < size q by rewrite size_poly_gt0 q0.
have sr: 0 < size r by apply: leq_trans sq hqr.
apply: ihn => //.
-
apply/leq_sizeP=> j hnj.
rewrite coefB -scalerAl coefZ coefXnM ltn_subRL ltnNge.
have hj: (size r).-1 <= j.
by apply: leq_trans hnj; move: hrn; rewrite -{1}(prednK sr) ltnS.
rewrite polySpred -?size_poly_gt0 // (leq_ltn_trans hj) /=; last first. by rewrite -{1}(add0n j) ltn_add2r.
move: (hj); rewrite leq_eqVlt; case/orP.
move/eqP <-; rewrite (@polySpred _ q) ?q0 // subSS coefMC.
rewrite subKn; first by rewrite lead_coefE subrr.
by rewrite -ltnS -!polySpred // ?q0 -?size_poly_gt0.
move=> {hj}hj; move: (hj); rewrite prednK // coefMC; move/leq_sizeP=> -> //.
suff: size q <= j - (size r - size q).
by rewrite mul0r sub0r; move/leq_sizeP=> -> //; rewrite mulr0 oppr0.
rewrite subnBA // addnC -(prednK sq) -(prednK sr) addSn subSS.
by rewrite -addnBA ?(ltnW hj) // -{1}[_.-1]addn0 ltn_add2l subn_gt0.
-
apply: leq_trans (size_add _ _) _; rewrite geq_max; apply/andP; split.
apply: leq_trans (size_mul_leq _ _) _. by rewrite size_polyC lead_coef_eq0 q0 /= addn1.
rewrite size_opp; apply: leq_trans (size_mul_leq _ _) _.
apply: leq_trans hr; rewrite -subn1 leq_subLR -{2}(subnK hqr) addnA leq_add2r.
by rewrite add1n -(@size_polyXn R) size_scale_leq.
apply: leq_trans (size_add _ _) _; rewrite geq_max; apply/andP; split.
apply: leq_trans (size_mul_leq _ _) _.
by rewrite size_polyC lead_coef_eq0 q0 /= addnS addn0.
apply: leq_trans (size_scale_leq _ _) _; rewrite size_polyXn.
by rewrite -subSn // leq_subLR -add1n leq_add. Qed.
Lemma rmod0p p : rmodp 0 p = 0.
Proof.
rewrite /rmodp unlock; case: ifP => // Hp; rewrite /redivp_rec !size_poly0.
by rewrite polySpred ?Hp. Qed.
Lemma rmodp0 p : rmodp p 0 = p.
Proof. by rewrite /rmodp unlock eqxx. Qed.
Lemma rscalp_small p q : size p < size q -> rscalp p q = 0%N.
Proof.
rewrite /rscalp unlock; case: eqP => Eq // spq.
by case sp: (size p) => [|s] /=; rewrite spq. Qed.
Lemma ltn_rmodp p q : (size (rmodp p q) < size q) = (q != 0).
Proof.
rewrite /rdivp /rmodp /rscalp unlock; case q0: (q == 0).
by rewrite (eqP q0) /= size_poly0 ltn0.
elim: (size p) 0%N 0 {1 3}p (leqnn (size p)) => [|n ihn] k q1 r.
rewrite leqn0 size_poly_eq0; move/eqP->; rewrite /= size_poly0 /= lt0n.
by rewrite size_poly_eq0 q0 /= size_poly0 lt0n size_poly_eq0 q0.
move=> hr /=; case: (@ltnP (size r) _) => //= hsrq; rewrite ihn //.
apply/leq_sizeP=> j hnj; rewrite coefB.
have sr: 0 < size r.
by apply: leq_trans hsrq; apply: neq0_lt0n; rewrite size_poly_eq0.
have sq: 0 < size q by rewrite size_poly_gt0 q0.
have hj: (size r).-1 <= j.
by apply: leq_trans hnj; move: hr; rewrite -{1}(prednK sr) ltnS.
rewrite -scalerAl !coefZ coefXnM ltn_subRL ltnNge; move: (sr).
move/prednK=> {1}<-.
have -> /=: (size r).-1 < size q + j.
apply: (@leq_trans ((size q) + (size r).-1)); last by rewrite leq_add2l. by rewrite -{1}[_.-1]add0n ltn_add2r.
move: (hj); rewrite leq_eqVlt; case/orP.
move/eqP <-; rewrite -{1}(prednK sq) -{3}(prednK sr) subSS.
rewrite subKn; first by rewrite coefMC !lead_coefE subrr.
by move: hsrq; rewrite -{1}(prednK sq) -{1}(prednK sr) ltnS.
move=> {hj}hj; move: (hj); rewrite prednK // coefMC; move/leq_sizeP=> -> //.
suff: size q <= j - (size r - size q).
by rewrite mul0r sub0r; move/leq_sizeP=> -> //; rewrite mulr0 oppr0.
rewrite subnBA // addnC -(prednK sq) -(prednK sr) addSn subSS.
by rewrite -addnBA ?(ltnW hj) // -{1}[_.-1]addn0 ltn_add2l subn_gt0. Qed.
Lemma ltn_rmodpN0 p q : q != 0 -> size (rmodp p q) < size q.
Proof. by rewrite ltn_rmodp. Qed.
Lemma rmodp1 p : rmodp p 1 = 0.
Proof.
case p0: (p == 0); first by rewrite (eqP p0) rmod0p.
apply/eqP; rewrite -size_poly_eq0.
by have:= (ltn_rmodp p 1); rewrite size_polyC !oner_neq0 ltnS leqn0. Qed.
Lemma rmodp_small p q : size p < size q -> rmodp p q = p.
Proof.
rewrite /rmodp unlock; case: eqP => Eq; first by rewrite Eq size_poly0.
by case sp: (size p) => [|s] Hs /=; rewrite sp Hs /=. Qed.
Lemma leq_rmodp m d : size (rmodp m d) <= size m.
Proof.
case: (ltnP (size m) (size d)) => [|h]; first by move/rmodp_small->.
case d0: (d == 0); first by rewrite (eqP d0) rmodp0.
by apply: leq_trans h; apply: ltnW; rewrite ltn_rmodp d0. Qed.
Lemma rmodpC p c : c != 0 -> rmodp p c%:P = 0.
Proof.
move=> Hc; apply/eqP; rewrite -size_poly_eq0 -leqn0 -ltnS.
have ->: 1%N = nat_of_bool (c != 0) by rewrite Hc. by rewrite -size_polyC ltn_rmodp polyC_eq0. Qed.
Lemma rdvdp0 d : rdvdp d 0.
Proof. by rewrite /rdvdp rmod0p. Qed.
Lemma rdvd0p n : (rdvdp 0 n) = (n == 0).
Proof. by rewrite /rdvdp rmodp0. Qed.
Lemma rdvd0pP n : reflect (n = 0) (rdvdp 0 n).
Proof. by apply: (iffP idP); rewrite rdvd0p; move/eqP. Qed.
Lemma rdvdpN0 p q : rdvdp p q -> q != 0 -> p != 0.
Proof. by move=> pq hq; apply: contraL pq => /eqP->; rewrite rdvd0p. Qed.
Lemma rdvdp1 d : (rdvdp d 1) = ((size d) == 1%N).
Proof.
rewrite /rdvdp; case d0: (d == 0).
by rewrite (eqP d0) rmodp0 size_poly0 (negPf (@oner_neq0 _)).
have:= (size_poly_eq0 d); rewrite d0; move/negbT; rewrite -lt0n.
rewrite leq_eqVlt; case/orP=> hd; last first.
by rewrite rmodp_small ?size_poly1 // oner_eq0 -(subnKC hd).
rewrite eq_sym in hd; rewrite hd; have [c cn0 ->] := size_poly1P _ hd.
rewrite /rmodp unlock -size_poly_eq0 size_poly1 /= size_poly1 size_polyC cn0 /=.
by rewrite polyC_eq0 (negPf cn0) !lead_coefC !scale1r subrr !size_poly0. Qed.
Lemma rdvd1p m : rdvdp 1 m.
Proof. by rewrite /rdvdp rmodp1. Qed.
Lemma Nrdvdp_small (n d : {poly R}) :
n != 0 -> size n < size d -> (rdvdp d n) = false.
Proof. by move=> nn0 hs; rewrite /rdvdp; rewrite (rmodp_small hs); apply: negPf. Qed.
Lemma rmodp_eq0P p q : reflect (rmodp p q = 0) (rdvdp q p).
Proof. exact: (iffP eqP). Qed.
Lemma rmodp_eq0 p q : rdvdp q p -> rmodp p q = 0.
Proof. by move/rmodp_eq0P. Qed.
Lemma rdvdp_leq p q : rdvdp p q -> q != 0 -> size p <= size q.
Proof. by move=> dvd_pq; rewrite leqNgt; apply: contra => /rmodp_small <-. Qed.
Definition rgcdp p q :=
let: (p1, q1) :=
if size p < size q then (q, p) else (p, q) in
if p1 == 0 then q1 else
let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := rmodp pp qq in if rr == 0 then qq else
if n is n1.+1 then loop n1 qq rr else rr in loop (size p1) p1 q1.
Lemma rgcd0p : left_id 0 rgcdp.
Proof.
move=> p; rewrite /rgcdp size_poly0 size_poly_gt0 if_neg.
case: ifP => /= [_ | nzp]; first by rewrite eqxx.
by rewrite polySpred !(rmodp0, nzp) //; case: _.-1 => [|m]; rewrite rmod0p eqxx. Qed.
Lemma rgcdp0 : right_id 0 rgcdp.
Proof.
move=> p; have:= rgcd0p p; rewrite /rgcdp size_poly0 size_poly_gt0 if_neg.
by case: ifP => /= p0; rewrite ?(eqxx, p0) // (eqP p0). Qed.
Lemma rgcdpE p q :
rgcdp p q = if size p < size q then rgcdp (rmodp q p) p else rgcdp (rmodp p q) q.
Proof.
pose rgcdp_rec := fix rgcdp_rec (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := rmodp pp qq in
if rr == 0 then qq else
if n is n1.+1 then rgcdp_rec n1 qq rr else rr.
have Irec: forall m n p q, size q <= m -> size q <= n -> size q < size p -> rgcdp_rec m p q = rgcdp_rec n p q.
+
elim=> [|m Hrec] [|n] //= p1 q1.
-
rewrite leqn0 size_poly_eq0; move/eqP=> -> _.
rewrite size_poly0 size_poly_gt0 rmodp0 => nzp.
by rewrite (negPf nzp); case: n => [|n] /=; rewrite rmod0p eqxx.
-
rewrite leqn0 size_poly_eq0 => _; move/eqP=> ->.
rewrite size_poly0 size_poly_gt0 rmodp0 => nzp.
by rewrite (negPf nzp); case: m {Hrec} => [|m] /=; rewrite rmod0p eqxx.
case: ifP => Epq Sm Sn Sq //; rewrite ?Epq //.
case: (eqVneq q1 0) => [->|nzq].
by case: n m {Sm Sn Hrec} => [|m] [|n] //=; rewrite rmod0p eqxx.
apply: Hrec; last by rewrite ltn_rmodp.
by rewrite -ltnS (leq_trans _ Sm) // ltn_rmodp.
by rewrite -ltnS (leq_trans _ Sn) // ltn_rmodp.
case: (eqVneq p 0) => [-> | nzp].
by rewrite rmod0p rmodp0 rgcd0p rgcdp0 if_same.
case: (eqVneq q 0) => [-> | nzq].
by rewrite rmod0p rmodp0 rgcd0p rgcdp0 if_same.
rewrite /rgcdp -/rgcdp_rec.
case: ltnP; rewrite (negPf nzp, negPf nzq) //=.
move=> ltpq; rewrite ltn_rmodp (negPf nzp) //=.
rewrite -(ltn_predK ltpq) /=; case: eqP => [->|].
by case: (size p) => [|[|s]]; rewrite /= rmodp0 (negPf nzp) // rmod0p eqxx.
move/eqP=> nzqp; rewrite (negPf nzp).
apply: Irec => //; last by rewrite ltn_rmodp.
by rewrite -ltnS (ltn_predK ltpq) (leq_trans _ ltpq) ?leqW // ltn_rmodp.
by rewrite ltnW // ltn_rmodp.
move=> leqp; rewrite ltn_rmodp (negPf nzq) //=.
have p_gt0: size p > 0 by rewrite size_poly_gt0.
rewrite -(prednK p_gt0) /=; case: eqP => [->|].
by case: (size q) => [|[|s]]; rewrite /= rmodp0 (negPf nzq) // rmod0p eqxx.
move/eqP=> nzpq; rewrite (negPf nzq).
apply: Irec => //; last by rewrite ltn_rmodp.
by rewrite -ltnS (prednK p_gt0) (leq_trans _ leqp) // ltn_rmodp.
by rewrite ltnW // ltn_rmodp. Qed.
Variant comm_redivp_spec m d : nat * {poly R} * {poly R} -> Type :=
ComEdivnSpec k (q r : {poly R}) of
(GRing.comm d (lead_coef d)%:P ->
m * (lead_coef d ^+ k)%:P = q * d + r)
& (d != 0 -> size r < size d) : comm_redivp_spec m d (k, q, r).
Lemma comm_redivpP m d : comm_redivp_spec m d (redivp m d).
Proof.
rewrite unlock; case: (altP (d =P 0)) => [-> |Hd]. by constructor; rewrite !(simp, eqxx).
have: GRing.comm d (lead_coef d)%:P -> m * (lead_coef d ^+ 0)%:P = 0 * d + m. by rewrite !simp.
elim: (size m) 0%N 0 {1 4 6}m (leqnn (size m)) => [|n IHn] k q r Hr /=.
have{Hr} ->: r = 0 by apply/eqP; rewrite -size_poly_eq0; move: Hr; case: size.
suff hsd: size (0 : {poly R}) < size d by rewrite hsd => /= ?; constructor.
by rewrite size_polyC eqxx (polySpred Hd).
case: ltP => Hlt Heq; first by constructor => // _; apply/ltP.
apply: IHn => [|Cda]; last first.
rewrite mulrDl addrAC -addrA subrK exprSr polyC_mul mulrA Heq //.
by rewrite mulrDl -mulrA Cda mulrA.
apply/leq_sizeP=> j Hj.
rewrite coefD coefN coefMC -scalerAl coefZ coefXnM.
move/ltP: Hlt; rewrite -leqNgt => Hlt.
move: Hj; rewrite leq_eqVlt; case/predU1P=> [<- {j} | Hj]; last first.
rewrite nth_default ?(leq_trans Hqq) // ?simp; last by apply: (leq_trans Hr).
rewrite nth_default; first by rewrite if_same !simp oppr0.
by rewrite -{1}(subKn Hlt) leq_sub2r // (leq_trans Hr).
move: Hr; rewrite leq_eqVlt ltnS; case/predU1P=> Hqq; last first.
rewrite !nth_default ?if_same ?simp ?oppr0 //.
by rewrite -{1}(subKn Hlt) leq_sub2r // (leq_trans Hqq).
rewrite {2}/lead_coef Hqq polySpred // subSS ltnNge leq_subr /=.
by rewrite subKn ?addrN // -subn1 leq_subLR add1n -Hqq. Qed.
Lemma rmodpp p : GRing.comm p (lead_coef p)%:P -> rmodp p p = 0.
Proof.
move=> hC; rewrite /rmodp unlock; case: ifP => hp /=; first by rewrite (eqP hp).
move: (hp); rewrite -size_poly_eq0 /redivp_rec; case sp: (size p) => [|n] // _.
rewrite mul0r sp ltnn add0r subnn expr0 hC alg_polyC subrr. by case: n sp => [|n] sp; rewrite size_polyC /= eqxx. Qed.
Definition rcoprimep (p q : {poly R}) := size (rgcdp p q) == 1%N.
Fixpoint rgdcop_rec q p n :=
if n is m.+1 then
if rcoprimep p q then p
else rgdcop_rec q (rdivp p (rgcdp p q)) m else (q == 0)%:R.
Definition rgdcop q p := rgdcop_rec q p (size p).
Lemma rgdcop0 q : rgdcop q 0 = (q == 0)%:R.
Proof. by rewrite /rgdcop size_poly0. Qed.
End RingPseudoDivision.
End CommonRing.
Module RingComRreg.
Import CommonRing.
Section ComRegDivisor.
Variable R : ringType.
Variable d : {poly R}.
Hypothesis Cdl : GRing.comm d (lead_coef d)%:P.
Hypothesis Rreg : GRing.rreg (lead_coef d).
Implicit Types p q r : {poly R}.
Lemma redivp_eq q r :
size r < size d ->
let k := (redivp (q * d + r) d).1.1 in
let c := (lead_coef d ^+ k)%:P in
redivp (q * d + r) d = (k, q * c, r * c).
Proof.
move=> lt_rd; case: comm_redivpP => k q1 r1; move/(_ Cdl) => Heq.
have: d != 0 by case: (size d) lt_rd (size_poly_eq0 d) => // n _ <-.
move=> dn0; move/(_ dn0) => Hs.
have eC: q * d * (lead_coef d ^+ k)%:P = q * (lead_coef d ^+ k)%:P * d.
by rewrite -mulrA polyC_exp (GRing.commrX k Cdl) mulrA.
suff e1: q1 = q * (lead_coef d ^+ k)%:P.
congr (_, _, _) => //=; move/eqP: Heq; rewrite [_ + r1]addrC.
rewrite -subr_eq; move/eqP <-; rewrite e1 mulrDl addrAC -{2}(add0r (r * _)). by rewrite eC subrr add0r.
have: (q1 - q * (lead_coef d ^+ k)%:P) * d = r * (lead_coef d ^+ k)%:P - r1.
apply: (@addIr _ r1); rewrite subrK.
apply: (@addrI _ ((q * (lead_coef d ^+ k)%:P) * d)).
by rewrite mulrDl mulNr !addrA [_ + (q1 * d)]addrC addrK -eC -mulrDl.
move/eqP; rewrite -[_ == _ - _]subr_eq0 rreg_div0 //. by case/andP; rewrite subr_eq0; move/eqP.
rewrite size_opp; apply: (leq_ltn_trans (size_add _ _)); rewrite size_opp.
rewrite gtn_max Hs (leq_ltn_trans (size_mul_leq _ _)) //.
rewrite size_polyC; case: (_ == _); last by rewrite addnS addn0.
by rewrite addn0; apply: leq_ltn_trans lt_rd; case: size. Qed.
Lemma rdivp_eq p :
p * (lead_coef d ^+ (rscalp p d))%:P = (rdivp p d) * d + (rmodp p d).
Proof.
by rewrite /rdivp /rmodp /rscalp; case: comm_redivpP => k q1 r1 Hc _; apply: Hc. Qed.
Lemma eq_rdvdp k q1 p : p * ((lead_coef d) ^+ k)%:P = q1 * d -> rdvdp d p.
Proof.
move=> he.
have Hnq0 := rreg_lead0 Rreg; set lq := lead_coef d.
pose v := rscalp p d; pose m := maxn v k.
rewrite /rdvdp -(rreg_polyMC_eq0 _ (@rregX _ _ (m - v) Rreg)).
suff: ((rdivp p d) * (lq ^+ (m - v))%:P -q1 * (lq ^+ (m - k))%:P) * d + (rmodp p d) * (lq ^+ (m - v))%:P == 0.
rewrite rreg_div0 //; first by case/andP.
by rewrite rreg_size ?ltn_rmodp //; apply rregX.
rewrite mulrDl addrAC mulNr -!mulrA polyC_exp -(GRing.commrX (m -v) Cdl).
rewrite -polyC_exp mulrA -mulrDl -rdivp_eq // [(_ ^+ (m - k))%:P]polyC_exp.
rewrite -(GRing.commrX (m -k) Cdl) -polyC_exp mulrA -he -!mulrA -!polyC_mul.
rewrite -/v -!exprD addnC subnK ?leq_maxl //.
by rewrite addnC subnK ?subrr ?leq_maxr. Qed.
Variant rdvdp_spec p q : {poly R} -> bool -> Type :=
| Rdvdp k q1 & p * ((lead_coef q) ^+ k)%:P = q1 * q : rdvdp_spec p q 0 true
| RdvdpN & rmodp p q != 0 : rdvdp_spec p q (rmodp p q) false.
Lemma rdvdp_eqP p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
Proof.
case hdvd: (rdvdp d p); last by apply: RdvdpN; move/rmodp_eq0P/eqP: hdvd.
move/rmodp_eq0P: (hdvd) ->; apply: (@Rdvdp _ _ (rscalp p d) (rdivp p d)).
by rewrite rdivp_eq //; move/rmodp_eq0P: (hdvd) ->; rewrite addr0. Qed.
Lemma rdvdp_mull p : rdvdp d (p * d).
Proof.
by apply: (@eq_rdvdp 0%N p); rewrite expr0 mulr1. Qed.
Lemma rmodp_mull p : rmodp (p * d) d = 0.
Proof.
case: (d =P 0) => Hd; first by rewrite Hd simp rmod0p. by apply/eqP; apply: rdvdp_mull. Qed.
Lemma rmodpp : rmodp d d = 0.
Proof. by rewrite -{1}(mul1r d) rmodp_mull. Qed.
Lemma rdivpp : rdivp d d = (lead_coef d ^+ rscalp d d)%:P.
have dn0: d != 0 by rewrite -lead_coef_eq0 rreg_neq0.
move: (rdivp_eq d); rewrite rmodpp addr0.
suff ->: GRing.comm d (lead_coef d ^+ rscalp d d)%:P by move/(rreg_lead Rreg)->. by rewrite polyC_exp; apply: commrX. Qed.
Lemma rdvdpp : rdvdp d d.
Proof. by apply/eqP; apply: rmodpp. Qed.
Lemma rdivpK p : rdvdp d p -> (rdivp p d) * d = p * (lead_coef d ^+ rscalp p d)%:P.
Proof.
by rewrite rdivp_eq /rdvdp; move/eqP->; rewrite addr0. Qed.
End ComRegDivisor.
End RingComRreg.
Module RingMonic.
Import CommonRing.
Import RingComRreg.
Section MonicDivisor.
Variable R : ringType.
Implicit Types p q r : {poly R}.
Variable d : {poly R}.
Hypothesis mond : d \is monic.
Lemma redivp_eq q r : size r < size d ->
let k := (redivp (q * d + r) d).1.1 in
redivp (q * d + r) d = (k, q, r).
Proof.
case: (monic_comreg mond) => Hc Hr; move/(redivp_eq Hc Hr q).
by rewrite (eqP mond) => -> /=; rewrite expr1n !mulr1. Qed.
Lemma rdivp_eq p : p = (rdivp p d) * d + (rmodp p d).
Proof.
rewrite -rdivp_eq; rewrite (eqP mond); last exact: commr1. by rewrite expr1n mulr1. Qed.
Lemma rdivpp : rdivp d d = 1.
Proof.
by case: (monic_comreg mond) => hc hr; rewrite rdivpp // (eqP mond) expr1n. Qed.
Lemma rdivp_addl_mul_small q r : size r < size d -> rdivp (q * d + r) d = q.
Proof. by move=> Hd; case: (monic_comreg mond) => Hc Hr; rewrite /rdivp redivp_eq. Qed.
Lemma rdivp_addl_mul q r : rdivp (q * d + r) d = q + rdivp r d.
Proof.
case: (monic_comreg mond) => Hc Hr; rewrite {1}(rdivp_eq r) addrA.
by rewrite -mulrDl rdivp_addl_mul_small // ltn_rmodp monic_neq0. Qed.
Lemma rdivp_addl q r :
rdvdp d q -> rdivp (q + r) d = rdivp q d + rdivp r d.
Proof.
case: (monic_comreg mond) => Hc Hr; rewrite {1}(rdivp_eq r) addrA.
rewrite {2}(rdivp_eq q); move/rmodp_eq0P->; rewrite addr0.
by rewrite -mulrDl rdivp_addl_mul_small // ltn_rmodp monic_neq0. Qed.
Lemma rdivp_addr q r :
rdvdp d r -> rdivp (q + r) d = rdivp q d + rdivp r d.
Proof.
by rewrite addrC; move/rdivp_addl->; rewrite addrC. Qed.
Lemma rdivp_mull p : rdivp (p * d) d = p.
Proof. by rewrite -[p * d]addr0 rdivp_addl_mul rdiv0p addr0. Qed.
Lemma rmodp_mull p : rmodp (p * d) d = 0.
Proof.
by apply: rmodp_mull; rewrite (eqP mond); [apply: commr1 | apply: rreg1]. Qed.
Lemma rmodpp : rmodp d d = 0.
Proof.
by apply: rmodpp; rewrite (eqP mond); [apply: commr1 | apply: rreg1]. Qed.
Lemma rmodp_addl_mul_small q r : size r < size d -> rmodp (q * d + r) d = r.
Proof. by move=> Hd; case: (monic_comreg mond) => Hc Hr; rewrite /rmodp redivp_eq. Qed.
Lemma rmodp_add p q : rmodp (p + q) d = rmodp p d + rmodp q d.
Proof.
rewrite {1}(rdivp_eq p) {1}(rdivp_eq q).
rewrite addrCA 2!addrA -mulrDl (addrC (rdivp q d)) -addrA.
rewrite rmodp_addl_mul_small //; apply: (leq_ltn_trans (size_add _ _)).
by rewrite gtn_max !ltn_rmodp // monic_neq0. Qed.
Lemma rmodp_mulmr p q :
rmodp (p * (rmodp q d)) d = rmodp (p * q) d.
Proof.
have ->: rmodp q d = q - (rdivp q d) * d. by rewrite {2}(rdivp_eq q) addrAC subrr add0r.
rewrite mulrDr rmodp_add -mulNr mulrA.
by rewrite -{2}[rmodp _ _]addr0; congr (_ + _); apply: rmodp_mull. Qed.
Lemma rdvdpp : rdvdp d d.
Proof.
by apply: rdvdpp; rewrite (eqP mond); [apply: commr1 | apply: rreg1]. Qed.
Lemma eq_rdvdp q1 p : p = q1 * d -> rdvdp d p.
Proof.
move=> h; apply: (@eq_rdvdp _ _ _ _ 1%N q1); rewrite (eqP mond).
- exact: commr1.
- exact: rreg1. by rewrite expr1n mulr1. Qed.
Lemma rdvdp_mull p : rdvdp d (p * d).
Proof.
by apply: rdvdp_mull; rewrite (eqP mond) //; [apply: commr1 | apply: rreg1]. Qed.
Lemma rdvdpP p :
reflect (exists qq, p = qq * d) (rdvdp d p).
Proof.
case: (monic_comreg mond) => Hc Hr; apply: (iffP idP).
case: rdvdp_eqP => // k qq; rewrite (eqP mond) expr1n mulr1 => -> _.
by exists qq. by case=> [qq]; move/eq_rdvdp. Qed.
Lemma rdivpK p : rdvdp d p -> (rdivp p d) * d = p.
Proof. by move=> dvddp; rewrite {2}[p]rdivp_eq rmodp_eq0 ?addr0. Qed.
End MonicDivisor.
End RingMonic.
Module Ring.
Include CommonRing.
Import RingMonic.
Section ExtraMonicDivisor.
Variable R : ringType.
Implicit Types d p q r : {poly R}.
Lemma rdivp1 p : rdivp p 1 = p.
Proof.
by rewrite -{1}(mulr1 p) rdivp_mull // monic1. Qed.
Lemma rdvdp_XsubCl p x : rdvdp ('X - x%:P) p = root p x.
Proof.
have [HcX Hr] := (monic_comreg (monicXsubC x)).
apply/rmodp_eq0P/factor_theorem; last first. by case=> p1 ->; apply: rmodp_mull; apply: monicXsubC.
move=> e0; exists (rdivp p ('X - x%:P)).
by rewrite {1}(rdivp_eq (monicXsubC x) p) e0 addr0. Qed.
Lemma polyXsubCP p x : reflect (p.[x] = 0) (rdvdp ('X - x%:P) p).
Proof. by apply: (iffP idP); rewrite rdvdp_XsubCl; move/rootP. Qed.
Lemma root_factor_theorem p x : root p x = (rdvdp ('X - x%:P) p).
Proof. by rewrite rdvdp_XsubCl. Qed.
End ExtraMonicDivisor.
End Ring.
Module ComRing.
Import Ring.
Import RingComRreg.
Section CommutativeRingPseudoDivision.
Variable R : comRingType.
Implicit Types d p q m n r : {poly R}.
Variant redivp_spec (m d : {poly R}) :
nat * {poly R} * {poly R} -> Type :=
EdivnSpec k (q r : {poly R}) of (lead_coef d ^+ k) *: m = q * d + r & (d != 0 -> size r < size d) : redivp_spec m d (k, q, r).
Lemma redivpP m d : redivp_spec m d (redivp m d).
Proof.
rewrite redivp_def; constructor; last by move=> dn0; rewrite ltn_rmodp.
by rewrite -mul_polyC mulrC rdivp_eq //= /GRing.comm mulrC. Qed.
Lemma rdivp_eq d p :
(lead_coef d ^+ (rscalp p d)) *: p = (rdivp p d) * d + (rmodp p d).
Proof.
by rewrite /rdivp /rmodp /rscalp; case: redivpP => k q1 r1 Hc _; apply: Hc. Qed.
Lemma rdvdp_eqP d p : rdvdp_spec p d (rmodp p d) (rdvdp d p).
Proof.
case hdvd: (rdvdp d p); last by apply: RdvdpN; move/rmodp_eq0P/eqP: hdvd.
move/rmodp_eq0P: (hdvd) ->; apply: (@Rdvdp _ _ _ (rscalp p d) (rdivp p d)).
by rewrite mulrC mul_polyC rdivp_eq; move/rmodp_eq0P: (hdvd) ->; rewrite addr0. Qed.
Lemma rdvdp_eq q p :
(rdvdp q p) = ((lead_coef q) ^+ (rscalp p q) *: p == (rdivp p q) * q).
apply/rmodp_eq0P/eqP; rewrite rdivp_eq; first by move->; rewrite addr0.
by move/eqP; rewrite eq_sym addrC -subr_eq subrr; move/eqP->. Qed.
End CommutativeRingPseudoDivision.
End ComRing.
Module UnitRing.
Import Ring.
Section UnitRingPseudoDivision.
Variable R : unitRingType.
Implicit Type p q r d : {poly R}.
Lemma uniq_roots_rdvdp p rs : all (root p) rs -> uniq_roots rs -> rdvdp (\prod_(z <- rs) ('X - z%:P)) p.
Proof.
move=> rrs; case/(uniq_roots_prod_XsubC rrs)=> q ->. exact/RingMonic.rdvdp_mull/monic_prod_XsubC. Qed.
End UnitRingPseudoDivision.
End UnitRing.
Module IdomainDefs.
Import Ring.
Section IDomainPseudoDivisionDefs.
Variable R : idomainType.
Implicit Type p q r d : {poly R}.
Definition edivp_expanded_def p q :=
let: (k, d, r) as edvpq := redivp p q in
if lead_coef q \in GRing.unit then (0%N, (lead_coef q) ^- k *: d, (lead_coef q) ^- k *: r)
else edvpq.
Fact edivp_key : unit.
Proof. by []. Qed.
Definition edivp := locked_with edivp_key edivp_expanded_def.
Canonical edivp_unlockable := [unlockable fun edivp].
Definition divp p q := ((edivp p q).1).2.
Definition modp p q := (edivp p q).2.
Definition scalp p q := ((edivp p q).1).1.
Definition dvdp p q := modp q p == 0.
Definition eqp p q := (dvdp p q) && (dvdp q p).
End IDomainPseudoDivisionDefs.
Notation "m %/ d" := (divp m d) : ring_scope.
Notation "m %% d" := (modp m d) : ring_scope.
Notation "p %| q" := (dvdp p q) : ring_scope.
Notation "p %= q" := (eqp p q) : ring_scope.
End IdomainDefs.
Module WeakIdomain.
Import Ring ComRing UnitRing IdomainDefs.
Section WeakTheoryForIDomainPseudoDivision.
Variable R : idomainType.
Implicit Type p q r d : {poly R}.
Lemma edivp_def p q :
edivp p q = (scalp p q, divp p q, modp p q).
Proof.
by rewrite /scalp /divp /modp; case: (edivp p q) => [[]] /=. Qed.
Lemma edivp_redivp p q : (lead_coef q \in GRing.unit) = false -> edivp p q = redivp p q.
Proof. by move=> hu; rewrite unlock hu; case: (redivp p q) => [[??] ?]. Qed.
Lemma divpE p q :
p %/ q = if lead_coef q \in GRing.unit then (lead_coef q) ^- (rscalp p q) *: (rdivp p q) else rdivp p q.
Proof.
by case ulcq: (lead_coef q \in GRing.unit); rewrite /divp unlock redivp_def ulcq. Qed.
Lemma modpE p q :
p %% q = if lead_coef q \in GRing.unit then (lead_coef q) ^- (rscalp p q) *: (rmodp p q) else rmodp p q.
Proof.
by case ulcq: (lead_coef q \in GRing.unit); rewrite /modp unlock redivp_def ulcq. Qed.
Lemma scalpE p q : scalp p q = if lead_coef q \in GRing.unit then 0%N else rscalp p q.
Proof.
by case h: (lead_coef q \in GRing.unit); rewrite /scalp unlock redivp_def h. Qed.
Lemma dvdpE p q : p %| q = rdvdp p q.
Proof.
rewrite /dvdp modpE /rdvdp; case ulcq: (lead_coef p \in GRing.unit) => //.
rewrite -[_ *: _ == 0]size_poly_eq0 size_scale ?size_poly_eq0 //.
by rewrite invr_eq0 expf_neq0 //; apply: contraTneq ulcq => ->; rewrite unitr0. Qed.
Lemma lc_expn_scalp_neq0 p q : lead_coef q ^+ scalp p q != 0.
Proof.
case: (eqVneq q 0) => [->|nzq]; last by rewrite expf_neq0 ?lead_coef_eq0. by rewrite /scalp 2!unlock /= eqxx lead_coef0 unitr0 /= oner_neq0. Qed.
Hint Resolve lc_expn_scalp_neq0 : core.
Variant edivp_spec (m d : {poly R}) :
nat * {poly R} * {poly R} -> bool -> Type :=
| Redivp_spec k (q r : {poly R}) of
(lead_coef d ^+ k) *: m = q * d + r
& lead_coef d \notin GRing.unit & (d != 0 -> size r < size d) :
edivp_spec m d (k, q, r) false
| Fedivp_spec
(q r : {poly R})
of
m
= q
* d + r
& (lead_coef d \in GRing.unit) & (d != 0 -> size r < size d) : edivp_spec m d (0%N, q, r) true.
Lemma edivpP m d : edivp_spec m d (edivp m d) (lead_coef d \in GRing.unit).
Proof.
have hC: GRing.comm d (lead_coef d)%:P by rewrite /GRing.comm mulrC.
case ud: (lead_coef d \in GRing.unit); last first.
rewrite edivp_redivp // redivp_def; constructor; rewrite ?ltn_rmodp // ?ud //. by rewrite rdivp_eq.
have cdn0: lead_coef d != 0 by apply: contraTneq ud => ->; rewrite unitr0.
rewrite unlock ud redivp_def; constructor => //.
rewrite -scalerAl -scalerDr -mul_polyC.
have hn0: (lead_coef d ^+ rscalp m d)%:P != 0. by rewrite polyC_eq0; apply: expf_neq0.
apply: (mulfI hn0); rewrite !mulrA -exprVn !polyC_exp -exprMn -polyC_mul.
by rewrite divrr // expr1n mul1r -polyC_exp mul_polyC rdivp_eq.
move=> dn0; rewrite size_scale ?ltn_rmodp // -exprVn expf_eq0 negb_and. by rewrite invr_eq0 cdn0 orbT. Qed.
Lemma edivp_eq d q r :
size r < size d -> lead_coef d \in GRing.unit ->
edivp (q * d + r) d = (0%N, q, r).
Proof.
have hC: GRing.comm d (lead_coef d)%:P by apply: mulrC.
move=> hsrd hu; rewrite unlock hu; case et: (redivp _ _) => [[s qq] rr].
have cdn0: lead_coef d != 0.
by move: hu; case d0: (lead_coef d == 0) => //; rewrite (eqP d0) unitr0.
move: (et); rewrite RingComRreg.redivp_eq //; last by apply/rregP.
rewrite et /=; case=> e1 e2; rewrite -!mul_polyC -!exprVn !polyC_exp.
suff h x y: x * (lead_coef d ^+ s)%:P = y -> ((lead_coef d)^-1)%:P ^+ s * y = x.
by congr (_, _, _); apply: h.
have hn0: (lead_coef d)%:P ^+ s != 0 by apply: expf_neq0; rewrite polyC_eq0.
move=> hh; apply: (mulfI hn0); rewrite mulrA -exprMn -polyC_mul divrr //.
by rewrite expr1n mul1r -polyC_exp mulrC; apply: sym_eq. Qed.
Lemma divp_eq p q :
(lead_coef q ^+ (scalp p q)) *: p = (p %/ q) * q + (p %% q).
Proof.
rewrite divpE modpE scalpE.
case uq: (lead_coef q \in GRing.unit); last by rewrite rdivp_eq.
rewrite expr0 scale1r; case: (altP (q =P 0)) => [-> | qn0].
rewrite mulr0 add0r lead_coef0 rmodp0 /rscalp unlock eqxx expr0 invr1. by rewrite scale1r.
have hn0: (lead_coef q ^+ rscalp p q)%:P != 0.
by rewrite polyC_eq0 expf_neq0 // lead_coef_eq0.
apply: (mulfI hn0).
rewrite -scalerAl -scalerDr !mul_polyC scalerA mulrV ?unitrX //.
by rewrite scale1r rdivp_eq. Qed.
Lemma dvdp_eq q p :
(q %| p) = ((lead_coef q) ^+ (scalp p q) *: p == (p %/ q) * q).
Proof.
rewrite dvdpE rdvdp_eq scalpE divpE; case: ifP => ulcq //.
rewrite expr0 scale1r; apply/eqP/eqP.
by rewrite -scalerAl; move <-; rewrite scalerA mulVr ?scale1r // unitrX.
by move=> {2}->; rewrite scalerAl scalerA mulrV ?scale1r // unitrX. Qed.
Lemma divpK d p : d %| p -> p %/ d * d = ((lead_coef d) ^+ (scalp p d)) *: p.
Proof. by rewrite dvdp_eq; move/eqP->. Qed.
Lemma divpKC d p :
d %| p -> d * (p %/ d) = ((lead_coef d) ^+ (scalp p d)) *: p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma dvdpP q p :
reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 * q)
(q %| p).
Proof.
rewrite dvdp_eq; apply: (iffP eqP) => [e | [[c qq] cn0 e]].
by exists (lead_coef q ^+ scalp p q, p %/ q) => //=.
apply/eqP; rewrite -dvdp_eq dvdpE.
have Ecc: c%:P != 0 by rewrite polyC_eq0.
case: (eqVneq p 0) => [->|nz_p]; first by rewrite rdvdp0.
pose p1 : {poly R} := lead_coef q ^+ rscalp p q *: qq - c *: (rdivp p q).
have E1: c *: (rmodp p q) = p1 * q.
rewrite mulrDl {1}mulNr -scalerAl -e scalerA mulrC -scalerA -scalerAl. by rewrite -scalerBr rdivp_eq addrC addKr.
rewrite /dvdp; apply/idPn=> m_nz.
have: p1 * q != 0 by rewrite -E1 -mul_polyC mulf_neq0 // -/(dvdp q p) dvdpE.
rewrite mulf_eq0; case/norP=> p1_nz q_nz; have:= ltn_rmodp p q.
rewrite q_nz -(size_scale _ cn0) E1 size_mul //.
by rewrite polySpred // ltnNge leq_addl. Qed.
Lemma mulpK p q : q != 0 -> p * q %/ q = lead_coef q ^+ scalp (p * q) q *: p.
Proof.
move=> qn0; move/rregP: (qn0); apply; rewrite -scalerAl divp_eq.
suff ->: (p * q) %% q = 0 by rewrite addr0.
rewrite modpE RingComRreg.rmodp_mull ?scaler0 ?if_same //. by red; rewrite mulrC. by apply/rregP; rewrite lead_coef_eq0. Qed.
Lemma mulKp p q : q != 0 -> q * p %/ q = lead_coef q ^+ scalp (p * q) q *: p.
Proof. by move=> nzq; rewrite mulrC; apply: mulpK. Qed.
Lemma divpp p : p != 0 -> p %/ p = (lead_coef p ^+ scalp p p)%:P.
Proof.
move=> np0; have:= (divp_eq p p).
suff ->: p %% p = 0.
by rewrite addr0; move/eqP; rewrite -mul_polyC (inj_eq (mulIf np0)); move/eqP.
rewrite modpE Ring.rmodpp; last by red; rewrite mulrC. by rewrite scaler0 if_same. Qed.
End WeakTheoryForIDomainPseudoDivision.
Hint Resolve lc_expn_scalp_neq0 : core.
End WeakIdomain.
Module CommonIdomain.
Import Ring ComRing UnitRing IdomainDefs WeakIdomain.
Section IDomainPseudoDivision.
Variable R : idomainType.
Implicit Type p q r d m n : {poly R}.
Lemma scalp0 p : scalp p 0 = 0%N.
Proof. by rewrite /scalp unlock lead_coef0 unitr0 unlock eqxx. Qed.
Lemma divp_small p q : size p < size q -> p %/ q = 0.
Proof.
move=> spq; rewrite /divp unlock redivp_def /=.
by case: ifP; rewrite rdivp_small // scaler0. Qed.
Lemma leq_divp p q : (size (p %/ q) <= size p).
Proof.
rewrite /divp unlock redivp_def /=; case: ifP => /=; rewrite ?leq_rdivp //.
move=> ulcq; rewrite size_scale ?leq_rdivp //.
rewrite -exprVn expf_neq0 // invr_eq0.
by move: ulcq; case lcq0: (lead_coef q == 0) => //; rewrite (eqP lcq0) unitr0. Qed.
Lemma div0p p : 0 %/ p = 0.
Proof. by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdiv0p // scaler0. Qed.
Lemma divp0 p : p %/ 0 = 0.
Proof. by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdivp0 // scaler0. Qed.
Lemma divp1 m : m %/ 1 = m.
Proof.
by rewrite divpE lead_coefC unitr1 Ring.rdivp1 expr1n invr1 scale1r. Qed.
Lemma modp0 p : p %% 0 = p.
Proof.
rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp0 //= lead_coef0. by rewrite unitr0. Qed.
Lemma mod0p p : 0 %% p = 0.
Proof. by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmod0p // scaler0. Qed.
Lemma modp1 p : p %% 1 = 0.
Proof. by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmodp1 // scaler0. Qed.
Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.
Lemma modp_small p q : size p < size q -> p %% q = p.
Proof.
move=> spq; rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp_small //.
by rewrite /= rscalp_small // expr0 /= invr1 scale1r. Qed.
Lemma modpC p c : c != 0 -> p %% c%:P = 0.
Proof.
move=> cn0; rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?rmodpC //. by rewrite scaler0. Qed.
Lemma modp_mull p q : (p * q) %% q = 0.
Proof.
case: (altP (q =P 0)) => [-> | nq0]; first by rewrite modp0 mulr0.
have rlcq: (GRing.rreg (lead_coef q)) by apply/rregP; rewrite lead_coef_eq0.
have hC: GRing.comm q (lead_coef q)%:P by red; rewrite mulrC.
by rewrite modpE; case: ifP => ulcq; rewrite RingComRreg.rmodp_mull // scaler0. Qed.
Lemma modp_mulr d p : (d * p) %% d = 0.
Proof. by rewrite mulrC modp_mull. Qed.
Lemma modpp d : d %% d = 0.
Proof. by rewrite -{1}(mul1r d) modp_mull. Qed.
Lemma ltn_modp p q : (size (p %% q) < size q) = (q != 0).
Proof.
rewrite /modp unlock redivp_def /=; case: ifP => /=; rewrite ?ltn_rmodp //.
move=> ulcq; rewrite size_scale ?ltn_rmodp //.
rewrite -exprVn expf_neq0 // invr_eq0.
by move: ulcq; case lcq0: (lead_coef q == 0) => //; rewrite (eqP lcq0) unitr0. Qed.
Lemma ltn_divpl d q p : d != 0 -> (size (q %/ d) < size p) = (size q < size (p * d)).
Proof.
move=> dn0; have sd: size d > 0 by rewrite size_poly_gt0 dn0.
have: (lead_coef d) ^+ (scalp q d) != 0 by apply: lc_expn_scalp_neq0.
move/size_scale; move/(_ q) <-; rewrite divp_eq; case quo0: (q %/ d == 0).
rewrite (eqP quo0) mul0r add0r size_poly0.
case p0: (p == 0); first by rewrite (eqP p0) mul0r size_poly0 ltnn ltn0.
have sp: size p > 0 by rewrite size_poly_gt0 p0.
rewrite /= size_mul ?p0 // sp; apply: sym_eq; move/prednK: (sp) <-.
by rewrite addSn /= ltn_addl // ltn_modp.
rewrite size_addl; last first.
rewrite size_mul ?quo0 //; move/negbT: quo0; rewrite -size_poly_gt0.
by move/prednK <-; rewrite addSn /= ltn_addl // ltn_modp.
case: (altP (p =P 0)) => [-> | pn0]; first by rewrite mul0r size_poly0 !ltn0.
by rewrite !size_mul ?quo0 //; move/prednK: sd <-; rewrite !addnS ltn_add2r. Qed.
Lemma leq_divpr d p q : d != 0 -> (size p <= size (q %/ d)) = (size (p * d) <= size q).
Proof. by move=> dn0; rewrite leqNgt ltn_divpl // -leqNgt. Qed.
Lemma divpN0 d p : d != 0 -> (p %/ d != 0) = (size d <= size p).
Proof.
move=> dn0; rewrite -{2}(mul1r d) -leq_divpr // size_polyC oner_eq0 /=. by rewrite size_poly_gt0. Qed.
Lemma size_divp p q : q != 0 -> size (p %/ q) = ((size p) - (size q).-1)%N.
Proof.
move=> nq0; case: (leqP (size q) (size p)) => sqp; last first.
move: (sqp); rewrite -{1}(ltn_predK sqp) ltnS -subn_eq0 divp_small //. by move/eqP->; rewrite size_poly0.
move: (nq0); rewrite -size_poly_gt0 => lt0sq.
move: (sqp); move/(leq_trans lt0sq) => lt0sp.
move: (lt0sp); rewrite size_poly_gt0 => p0.
move: (divp_eq p q); move/(congr1 (size \o (@polyseq R))) => /=.
rewrite size_scale; last by rewrite expf_eq0 lead_coef_eq0 (negPf nq0) andbF.
case: (eqVneq (p %/ q) 0) => [-> | qq0].
by rewrite mul0r add0r => es; move: nq0; rewrite -(ltn_modp p) -es ltnNge sqp.
move/negP: (qq0); move/negP; rewrite -size_poly_gt0 => lt0qq.
rewrite size_addl.
rewrite size_mul ?qq0 // => ->.
apply/eqP; rewrite -(eqn_add2r ((size q).-1)).
rewrite subnK; first by rewrite -subn1 addnBA // subn1.
rewrite /leq -(subnDl 1%N) !add1n prednK // (@ltn_predK (size q)) //.
by rewrite addnC subnDA subnn sub0n. by rewrite -[size q]add0n ltn_add2r.
rewrite size_mul ?qq0 //.
move: nq0; rewrite -(ltn_modp p); move/leq_trans; apply; move/prednK: lt0qq <-.
by rewrite addSn /= leq_addl. Qed.
Lemma ltn_modpN0 p q : q != 0 -> size (p %% q) < size q.
Proof. by rewrite ltn_modp. Qed.
Lemma modp_mod p q : (p %% q) %% q = p %% q.
Proof.
by case: (eqVneq q 0) => [-> | qn0]; rewrite ?modp0 // modp_small ?ltn_modp. Qed.
Lemma leq_modp m d : size (m %% d) <= size m.
Proof.
rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?leq_rmodp //.
move=> ud; rewrite size_scale ?leq_rmodp // invr_eq0 expf_neq0 //.
by apply: contraTneq ud => ->; rewrite unitr0. Qed.
Lemma dvdp0 d : d %| 0.
Proof. by rewrite /dvdp mod0p. Qed.
Hint Resolve dvdp0 : core.
Lemma dvd0p p : (0 %| p) = (p == 0).
Proof. by rewrite /dvdp modp0. Qed.
Lemma dvd0pP p : reflect (p = 0) (0 %| p).
Proof. by apply: (iffP idP); rewrite dvd0p; move/eqP. Qed.
Lemma dvdpN0 p q : p %| q -> q != 0 -> p != 0.
Proof.
by move=> pq hq; apply: contraL pq => /eqP->; rewrite dvd0p. Qed.
Lemma dvdp1 d : (d %| 1) = ((size d) == 1%N).
Proof.
rewrite /dvdp modpE; case ud: (lead_coef d \in GRing.unit); last exact: rdvdp1.
rewrite -size_poly_eq0 size_scale; first by rewrite size_poly_eq0 -rdvdp1.
by rewrite invr_eq0 expf_neq0 //; apply: contraTneq ud => ->; rewrite unitr0. Qed.
Lemma dvd1p m : 1 %| m.
Proof. by rewrite /dvdp modp1. Qed.
Lemma gtNdvdp p q : p != 0 -> size p < size q -> (q %| p) = false.
Proof. by move=> nn0 hs; rewrite /dvdp; rewrite (modp_small hs); apply: negPf. Qed.
Lemma modp_eq0P p q : reflect (p %% q = 0) (q %| p).
Proof. exact: (iffP eqP). Qed.
Lemma modp_eq0 p q : (q %| p) -> p %% q = 0.
Proof. by move/modp_eq0P. Qed.
Lemma leq_divpl d p q :
d %| p -> (size (p %/ d) <= size q) = (size p <= size (q * d)).
Proof.
case: (eqVneq d 0) => [-> | nd0].
by move/dvd0pP->; rewrite divp0 size_poly0 !leq0n.
move=> hd; rewrite leq_eqVlt ltn_divpl // (leq_eqVlt (size p)).
case lhs: (size p < size (q * d)); rewrite ?orbT ?orbF //.
have: (lead_coef d) ^+ (scalp p d) != 0 by rewrite expf_neq0 // lead_coef_eq0.
move/size_scale; move/(_ p) <-; rewrite divp_eq.
move/modp_eq0P: hd ->; rewrite addr0; case: (altP (p %/ d =P 0)) => [-> | quon0].
rewrite mul0r size_poly0 eq_sym (eq_sym 0%N) size_poly_eq0.
case: (altP (q =P 0)) => [-> | nq0]; first by rewrite mul0r size_poly0 eqxx.
by rewrite size_poly_eq0 mulf_eq0 (negPf nq0) (negPf nd0).
case: (altP (q =P 0)) => [-> | nq0].
by rewrite mul0r size_poly0 !size_poly_eq0 mulf_eq0 (negPf nd0) orbF.
rewrite !size_mul //; move: nd0; rewrite -size_poly_gt0; move/prednK <-. by rewrite !addnS /= eqn_add2r. Qed.
Lemma dvdp_leq p q : q != 0 -> p %| q -> size p <= size q.
move=> nq0 /modp_eq0P => rpq; case: (ltnP (size p) (size q)). by move/ltnW->.
rewrite leq_eqVlt; case/orP; first by move/eqP->.
by move/modp_small; rewrite rpq => h; move: nq0; rewrite h eqxx. Qed.
Lemma eq_dvdp c quo q p : c != 0 -> c *: p = quo * q -> q %| p.
Proof.
move=> cn0; case: (eqVneq p 0) => [->|nz_quo def_quo] //.
pose p1 : {poly R} := lead_coef q ^+ scalp p q *: quo - c *: (p %/ q).
have E1: c *: (p %% q) = p1 * q.
rewrite mulrDl {1}mulNr -scalerAl -def_quo scalerA mulrC -scalerA.
by rewrite -scalerAl -scalerBr divp_eq addrAC subrr add0r.
rewrite /dvdp; apply/idPn=> m_nz.
have: p1 * q != 0 by rewrite -E1 -mul_polyC mulf_neq0 // polyC_eq0.
rewrite mulf_eq0; case/norP=> p1_nz q_nz.
have:= (ltn_modp p q); rewrite q_nz -(size_scale (p %% q) cn0) E1.
by rewrite size_mul // polySpred // ltnNge leq_addl. Qed.
Lemma dvdpp d : d %| d.
Proof. by rewrite /dvdp modpp. Qed.
Hint Resolve dvdpp : core.
Lemma divp_dvd p q : (p %| q) -> ((q %/ p) %| q).
Proof.
case: (eqVneq p 0) => [-> | np0]; first by rewrite divp0.
rewrite dvdp_eq => /eqP h.
apply: (@eq_dvdp ((lead_coef p) ^+ (scalp q p)) p); last by rewrite mulrC.
by rewrite expf_neq0 // lead_coef_eq0. Qed.
Lemma dvdp_mull m d n : d %| n -> d %| m * n.
Proof.
case: (eqVneq d 0) => [->| dn0]; first by move/dvd0pP->; rewrite mulr0 dvdpp.
rewrite dvdp_eq => /eqP e.
apply: (@eq_dvdp (lead_coef d ^+ scalp n d) (m * (n %/ d))).
by rewrite expf_neq0 // lead_coef_eq0. by rewrite scalerAr e mulrA. Qed.
Lemma dvdp_mulr n d m : d %| m -> d %| m * n.
Proof. by move=> hdm; rewrite mulrC dvdp_mull. Qed.
Hint Resolve dvdp_mull dvdp_mulr : core.
Lemma dvdp_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2.
Proof.
case: (eqVneq d1 0) => [->| d1n0]; first by move/dvd0pP->; rewrite !mul0r dvdpp.
case: (eqVneq d2 0) => [->| d2n0]; first by move=> _ /dvd0pP->; rewrite !mulr0.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1.
rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2.
apply: (@eq_dvdp (c1 * c2) (q1 * q2)).
by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
rewrite -scalerA scalerAr scalerAl Hq1 Hq2 -!mulrA.
by rewrite [d1 * (q2 * _)]mulrCA. Qed.
Lemma dvdp_addr m d n : d %| m -> (d %| m + n) = (d %| n).
Proof.
case: (altP (d =P 0)) => [-> | dn0]; first by move/dvd0pP->; rewrite add0r.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1.
apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _.
have sn0: c1 * c2 != 0.
by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 - c2 *: q1) _ _ sn0).
rewrite mulrDl -scaleNr -!scalerAl -Eq1 -Eq2 !scalerA.
by rewrite mulNr mulrC scaleNr -scalerBr addrC addKr.
have sn0: c1 * c2 != 0.
by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 + c2 *: q1) _ _ sn0).
by rewrite mulrDl -!scalerAl -Eq1 -Eq2 !scalerA mulrC addrC scalerDr. Qed.
Lemma dvdp_addl n d m : d %| n -> (d %| m + n) = (d %| m).
Proof. by rewrite addrC; apply: dvdp_addr. Qed.
Lemma dvdp_add d m n : d %| m -> d %| n -> d %| m + n.
Proof. by move/dvdp_addr->. Qed.
Lemma dvdp_add_eq d m n : d %| m + n -> (d %| m) = (d %| n).
Proof.
by move=> ?; apply/idP/idP; [move/dvdp_addr<- |move/dvdp_addl<-]. Qed.
Lemma dvdp_subr d m n : d %| m -> (d %| m - n) = (d %| n).
Proof. by move=> ?; apply dvdp_add_eq; rewrite -addrA addNr simp. Qed.
Lemma dvdp_subl d m n : d %| n -> (d %| m - n) = (d %| m).
Proof. by move/dvdp_addl <-; rewrite subrK. Qed.
Lemma dvdp_sub d m n : d %| m -> d %| n -> d %| m - n.
Proof. by move=> *; rewrite dvdp_subl. Qed.
Lemma dvdp_mod d n m : d %| n -> (d %| m) = (d %| m %% n).
Proof.
case: (altP (n =P 0)) => [-> | nn0]; first by rewrite modp0.
case: (altP (d =P 0)) => [-> | dn0]; first by move/dvd0pP->; rewrite modp0.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1.
apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _.
have sn0: c1 * c2 != 0.
by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF.
pose quo := (c1 * lead_coef n ^+ scalp m n) *: q2 - c2 *: (m %/ n) * q1.
move/eqP=> Eq2; apply: (@eq_dvdp _ quo _ _ sn0).
rewrite mulrDl mulNr -!scalerAl -!mulrA -Eq1 -Eq2 -scalerAr !scalerA.
rewrite mulrC [_ * c2]mulrC mulrA -[((_ * _) * _) *: _]scalerA -scalerBr.
by rewrite divp_eq addrC addKr.
have sn0: c1 * c2 * lead_coef n ^+ scalp m n != 0.
rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 ?(negPf dn0) ?andbF //.
by rewrite (negPf nn0) andbF.
move/eqP=> Eq2; apply: (@eq_dvdp _ (c2 *: (m %/ n) * q1 + c1 *: q2) _ _ sn0).
rewrite -scalerA divp_eq scalerDr -!scalerA Eq2 scalerAl scalerAr Eq1. by rewrite scalerAl mulrDl mulrA. Qed.
Lemma dvdp_trans : transitive (@dvdp R).
Proof.
move=> n d m.
case: (altP (d =P 0)) => [-> | dn0]; first by move/dvd0pP->.
case: (altP (n =P 0)) => [-> | nn0]; first by move=> _ /dvd0pP->.
rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1.
rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2.
have sn0: c1 * c2 != 0 by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
by apply: (@eq_dvdp _ (q2 * q1) _ _ sn0); rewrite -scalerA Hq2 scalerAr Hq1 mulrA. Qed.
Lemma dvdp_mulIl p q : p %| p * q.
Proof. by apply: dvdp_mulr; apply: dvdpp. Qed.
Lemma dvdp_mulIr p q : q %| p * q.
Proof. by apply: dvdp_mull; apply: dvdpp. Qed.
Lemma dvdp_mul2r r p q : r != 0 -> (p * r %| q * r) = (p %| q).
Proof.
move=> nzr.
case: (eqVneq p 0) => [-> | pn0].
by rewrite mul0r !dvd0p mulf_eq0 (negPf nzr) orbF.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite mul0r !dvdp0.
apply/idP/idP; last by move=> ?; rewrite dvdp_mul ?dvdpp.
rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> Hx.
apply: (@eq_dvdp c x).
by rewrite expf_neq0 // lead_coef_eq0 mulf_neq0.
by apply: (GRing.mulIf nzr); rewrite -GRing.mulrA -GRing.scalerAl. Qed.
Lemma dvdp_mul2l r p q : r != 0 -> (r * p %| r * q) = (p %| q).
Proof. by rewrite ![r * _]GRing.mulrC; apply: dvdp_mul2r. Qed.
Lemma ltn_divpr d p q :
d %| q -> (size p < size (q %/ d)) = (size (p * d) < size q).
Proof. by move=> dv_d_q; rewrite !ltnNge leq_divpl. Qed.
Lemma dvdp_exp d k p : 0 < k -> d %| p -> d %| (p ^+ k).
Proof.
by case: k => // k _ d_dv_m; rewrite exprS dvdp_mulr. Qed.
Lemma dvdp_exp2l d k l : k <= l -> d ^+ k %| d ^+ l.
Proof.
by move/subnK <-; rewrite exprD dvdp_mull // ?lead_coef_exp ?unitrX. Qed.
Lemma dvdp_Pexp2l d k l : 1 < size d -> (d ^+ k %| d ^+ l) = (k <= l).
Proof.
move=> sd; case: leqP => [|gt_n_m]; first exact: dvdp_exp2l.
have dn0: d != 0 by rewrite -size_poly_gt0; apply: ltn_trans sd.
rewrite gtNdvdp ?expf_neq0 // polySpred ?expf_neq0 // size_exp /=.
rewrite [size (d ^+ k)]polySpred ?expf_neq0 // size_exp ltnS ltn_mul2l.
by move: sd; rewrite -subn_gt0 subn1; move->. Qed.
Lemma dvdp_exp2r p q k : p %| q -> p ^+ k %| q ^+ k.
Proof.
case: (eqVneq p 0) => [-> | pn0]; first by move/dvd0pP->.
rewrite dvdp_eq; set c := _ ^+ _; set t := _ %/ _; move/eqP=> e.
apply: (@eq_dvdp (c ^+ k) (t ^+ k)); first by rewrite !expf_neq0 ?lead_coef_eq0.
by rewrite -exprMn -exprZn; congr (_ ^+ k). Qed.
Lemma dvdp_exp_sub p q k l : p != 0 ->
(p ^+ k %| q * p ^+ l) = (p ^+ (k - l) %| q).
Proof.
move=> pn0; case: (leqP k l) => hkl.
move: (hkl); rewrite -subn_eq0; move/eqP->; rewrite expr0 dvd1p.
apply: dvdp_mull; case: (ltnP 1%N (size p)) => sp. by rewrite dvdp_Pexp2l.
move: sp; case esp: (size p) => [|sp].
by move/eqP: esp; rewrite size_poly_eq0 (negPf pn0).
rewrite ltnS leqn0; move/eqP=> sp0; move/eqP: esp; rewrite sp0.
by case/size_poly1P=> c cn0 ->; move/subnK: hkl <-; rewrite exprD dvdp_mulIr.
rewrite -{1}[k](@subnK l) 1?ltnW // exprD dvdp_mul2r //.
elim: l {hkl} => [|l ihl]; first by rewrite expr0 oner_eq0.
by rewrite exprS mulf_neq0. Qed.
Lemma dvdp_XsubCl p x : ('X - x%:P) %| p = root p x.
Proof. by rewrite dvdpE; apply: Ring.rdvdp_XsubCl. Qed.
Lemma polyXsubCP p x : reflect (p.[x] = 0) (('X - x%:P) %| p).
Proof. by rewrite dvdpE; apply: Ring.polyXsubCP. Qed.
Lemma eqp_div_XsubC p c :
(p == (p %/ ('X - c%:P)) * ('X - c%:P)) = ('X - c%:P %| p).
Proof. by rewrite dvdp_eq lead_coefXsubC expr1n scale1r. Qed.
Lemma root_factor_theorem p x : root p x = (('X - x%:P) %| p).
Proof. by rewrite dvdp_XsubCl. Qed.
Lemma uniq_roots_dvdp p rs : all (root p) rs -> uniq_roots rs ->
(\prod_(z <- rs) ('X - z%:P)) %| p.
Proof.
move=> rrs; case/(uniq_roots_prod_XsubC rrs)=> q ->.
by apply: dvdp_mull; rewrite // (eqP (monic_prod_XsubC _)) unitr1. Qed.
Lemma root_bigmul : forall x (ps : seq {poly R}),
~~ root(\big[*%R/1]_(p <- ps) p) x = all (fun p => ~~ root p x) ps.
Proof.
move=> x; elim; first by rewrite big_nil root1. by move=> p ps ihp; rewrite big_cons /= rootM negb_or ihp. Qed.
Lemma eqpP m n :
reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n) (m %= n).
Proof.
apply: (iffP idP) => [|[[c1 c2] /andP[nz_c1 nz_c2 eq_cmn]]]; last first.
rewrite /eqp (@eq_dvdp c2 c1%:P) -?eq_cmn ?mul_polyC // (@eq_dvdp c1 c2%:P) //. by rewrite eq_cmn mul_polyC.
case: (eqVneq m 0) => [-> | m_nz].
by case/andP=> /dvd0pP -> _; exists (1, 1); rewrite ?scaler0 // oner_eq0.
case: (eqVneq n 0) => [-> | n_nz].
by case/andP=> _ /dvd0pP->; exists (1, 1); rewrite ?scaler0 // oner_eq0.
case/andP; rewrite !dvdp_eq; set c1 := _ ^+ _; set c2 := _ ^+ _.
set q1 := _ %/ _; set q2 := _ %/ _; move/eqP=> Hq1 /eqP Hq2; have Hc1: c1 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and m_nz orbT.
have Hc2: c2 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and n_nz orbT.
have def_q12: q1 * q2 = (c1 * c2)%:P.
apply: (mulIf m_nz); rewrite mulrAC mulrC -Hq1 -scalerAr -Hq2 scalerA. by rewrite -mul_polyC.
have: q1 * q2 != 0 by rewrite def_q12 -size_poly_eq0 size_polyC mulf_neq0.
rewrite mulf_eq0; case/norP=> nz_q1 nz_q2.
have: size q2 <= 1%N.
have:= size_mul nz_q1 nz_q2; rewrite def_q12 size_polyC mulf_neq0 //=.
by rewrite polySpred // => ->; rewrite leq_addl.
rewrite leq_eqVlt ltnS leqn0 size_poly_eq0 (negPf nz_q2) orbF.
case/size_poly1P=> c cn0 cqe; exists (c2, c); first by rewrite Hc2.
by rewrite Hq2 -mul_polyC -cqe. Qed.
Lemma eqp_eq p q : p %= q -> (lead_coef q) *: p = (lead_coef p) *: q.
Proof.
move=> /eqpP[[c1 c2] /= /andP[nz_c1 nz_c2]] eq.
have /(congr1 lead_coef) := eq; rewrite !lead_coefZ.
move=> eqC; apply/(@mulfI _ c2%:P); rewrite ?polyC_eq0 //.
rewrite !mul_polyC scalerA -eqC mulrC -scalerA eq. by rewrite !scalerA mulrC. Qed.
Lemma eqpxx : reflexive (@eqp R).
Proof. by move=> p; rewrite /eqp dvdpp. Qed.
Hint Resolve eqpxx : core.
Lemma eqp_sym : symmetric (@eqp R).
Proof. by move=> p q; rewrite /eqp andbC. Qed.
Lemma eqp_trans : transitive (@eqp R).
Proof.
move=> p q r; case/andP=> Dp pD; case/andP=> Dq qD.
by rewrite /eqp (dvdp_trans Dp) // (dvdp_trans qD). Qed.
Lemma eqp_ltrans : left_transitive (@eqp R).
Proof.
move=> p q r pq.
by apply/idP/idP=> e; apply: eqp_trans e; rewrite // eqp_sym. Qed.
Lemma eqp_rtrans : right_transitive (@eqp R).
Proof. by move=> x y xy z; rewrite eqp_sym (eqp_ltrans xy) eqp_sym. Qed.
Lemma eqp0 : forall p, (p %= 0) = (p == 0).
Proof.
move=> p; case: eqP; move/eqP=> Ep; first by rewrite (eqP Ep) eqpxx.
by apply/negP; case/andP=> _; rewrite /dvdp modp0 (negPf Ep). Qed.
Lemma eqp01 : 0 %= (1 : {poly R}) = false.
Proof.
case abs: (0 %= 1) => //; case/eqpP: abs => [[c1 c2]] /andP[c1n0 c2n0] /=.
by rewrite scaler0 alg_polyC; move/eqP; rewrite eq_sym polyC_eq0 (negbTE c2n0). Qed.
Lemma eqp_scale p c : c != 0 -> c *: p %= p.
Proof.
move=> c0; apply/eqpP; exists (1, c); first by rewrite c0 oner_eq0. by rewrite scale1r. Qed.
Lemma eqp_size p q : p %= q -> size p = size q.
Proof.
case: (q =P 0); move/eqP=> Eq; first by rewrite (eqP Eq) eqp0; move/eqP->.
rewrite eqp_sym; case: (p =P 0); move/eqP=> Ep.
by rewrite (eqP Ep) eqp0; move/eqP->. by case/andP=> Dp Dq; apply: anti_leq; rewrite !dvdp_leq. Qed.
Lemma size_poly_eq1 p : (size p == 1%N) = (p %= 1).
Proof.
apply/size_poly1P/idP=> [[c cn0 ep]| ].
by apply/eqpP; exists (1, c); rewrite ?oner_eq0 // alg_polyC scale1r.
by move/eqp_size; rewrite size_poly1; move/eqP; move/size_poly1P. Qed.
Lemma polyXsubC_eqp1 (x : R) : ('X - x%:P %= 1) = false.
Proof. by rewrite -size_poly_eq1 size_XsubC. Qed.
Lemma dvdp_eqp1 p q : p %| q -> q %= 1 -> p %= 1.
Proof.
move=> dpq hq.
have sizeq: size q == 1%N by rewrite size_poly_eq1.
have n0q: q != 0.
by case abs: (q == 0) => //; move: hq; rewrite (eqP abs) eqp01.
rewrite -size_poly_eq1 eqn_leq -{1}(eqP sizeq) dvdp_leq //=.
case p0: (size p == 0%N); last by rewrite neq0_lt0n.
by move: dpq; rewrite size_poly_eq0 in p0; rewrite (eqP p0) dvd0p (negbTE n0q). Qed.
Lemma eqp_dvdr q p d : p %= q -> d %| p = (d %| q).
Proof.
suff Hmn m n: m %= n -> (d %| m) -> (d %| n).
by move=> mn; apply/idP/idP; apply: Hmn => //; rewrite eqp_sym.
by rewrite /eqp; case/andP=> pq qp dp; apply: (dvdp_trans dp). Qed.
Lemma eqp_dvdl d2 d1 p : d1 %= d2 -> d1 %| p = (d2 %| p).
suff Hmn m n: m %= n -> (m %| p) -> (n %| p).
by move=> ?; apply/idP/idP; apply: Hmn; rewrite // eqp_sym.
by rewrite /eqp; case/andP=> dd' d'd dp; apply: (dvdp_trans d'd). Qed.
Lemma dvdp_scaler c m n : c != 0 -> m %| c *: n = (m %| n).
Proof. by move=> cn0; apply: eqp_dvdr; apply: eqp_scale. Qed.
Lemma dvdp_scalel c m n : c != 0 -> (c *: m %| n) = (m %| n).
Proof. by move=> cn0; apply: eqp_dvdl; apply: eqp_scale. Qed.
Lemma dvdp_opp d p : d %| (- p) = (d %| p).
Proof.
by apply: eqp_dvdr; rewrite -scaleN1r eqp_scale ?oppr_eq0 ?oner_eq0. Qed.
Lemma eqp_mul2r r p q : r != 0 -> (p * r %= q * r) = (p %= q).
Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2r. Qed.
Lemma eqp_mul2l r p q : r != 0 -> (r * p %= r * q) = (p %= q).
Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2l. Qed.
Lemma eqp_mull r p q : (q %= r) -> (p * q %= p * r).
Proof.
case/eqpP=> [[c d]] /andP[c0 d0 e]; apply/eqpP; exists (c, d); rewrite ?c0 //. by rewrite scalerAr e -scalerAr. Qed.
Lemma eqp_mulr q p r : (p %= q) -> (p * r %= q * r).
Proof. by move=> epq; rewrite ![_ * r]mulrC eqp_mull. Qed.
Lemma eqp_exp p q k : p %= q -> p ^+ k %= q ^+ k.
Proof.
move=> pq; elim: k => [|k ihk]; first by rewrite !expr0 eqpxx.
by rewrite !exprS (@eqp_trans (q * p ^+ k)) // (eqp_mulr, eqp_mull). Qed.
Lemma polyC_eqp1 (c : R) : (c%:P %= 1) = (c != 0).
Proof.
apply/eqpP/idP=> [[[x y]]| nc0] /=.
case c0: (c == 0); rewrite // alg_polyC (eqP c0) scaler0.
by case/andP=> _ /=; move/negbTE <-; move/eqP; rewrite eq_sym polyC_eq0.
exists (1, c); first by rewrite nc0 /= oner_neq0. by rewrite alg_polyC scale1r. Qed.
Lemma dvdUp d p : d %= 1 -> d %| p.
Proof. by move/eqp_dvdl->; rewrite dvd1p. Qed.
Lemma dvdp_size_eqp p q : p %| q -> size p == size q = (p %= q).
Proof.
move=> pq; apply/idP/idP; last by move/eqp_size->.
case (q =P 0) => [->|]; [|move/eqP=> Hq].
by rewrite size_poly0 size_poly_eq0; move/eqP->; rewrite eqpxx.
case (p =P 0) => [->|]; [|move/eqP=> Hp].
by rewrite size_poly0 eq_sym size_poly_eq0; move/eqP->; rewrite eqpxx.
move: pq; rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> eqpq.
move: (eqpq); move/(congr1 (size \o (@polyseq R))) => /=.
have cn0: c != 0 by rewrite expf_neq0 // lead_coef_eq0.
rewrite (@eqp_size _ q); last by apply: eqp_scale.
rewrite size_mul ?p0 // => [-> HH|]; last first.
apply/eqP=> HH; move: eqpq; rewrite HH mul0r.
by move/eqP; rewrite scale_poly_eq0 (negPf Hq) (negPf cn0).
suff: size x == 1%N.
case/size_poly1P=> y H1y H2y.
by apply/eqpP; exists (y, c); rewrite ?H1y // eqpq H2y mul_polyC.
case: (size p) HH (size_poly_eq0 p) => [|n]; first by case: eqP Hp.
by rewrite addnS -add1n eqn_add2r; move/eqP->. Qed.
Lemma eqp_root p q : p %= q -> root p =1 root q.
Proof.
move/eqpP=> [[c d]] /andP[c0 d0 e] x; move/negPf: c0=> c0; move/negPf: d0=> d0.
rewrite rootE -[_ == _]orFb -c0 -mulf_eq0 -hornerZ e hornerZ. by rewrite mulf_eq0 d0. Qed.
Lemma eqp_rmod_mod p q : rmodp p q %= modp p q.
Proof.
rewrite modpE eqp_sym; case: ifP => ulcq //.
apply: eqp_scale; rewrite invr_eq0 //.
by apply: expf_neq0; apply: contraTneq ulcq => ->; rewrite unitr0. Qed.
Lemma eqp_rdiv_div p q : rdivp p q %= divp p q.
Proof.
rewrite divpE eqp_sym; case: ifP => ulcq //; apply: eqp_scale; rewrite invr_eq0 //.
by apply: expf_neq0; apply: contraTneq ulcq => ->; rewrite unitr0. Qed.
Lemma dvd_eqp_divl d p q (dvd_dp : d %| q) (eq_pq : p %= q) : p %/ d %= q %/ d.
Proof.
case: (eqVneq q 0) eq_pq => [->|q_neq0]; first by rewrite eqp0 => /eqP ->.
have d_neq0: d != 0 by apply: contraL dvd_dp => /eqP->; rewrite dvd0p.
move=> eq_pq; rewrite -(@eqp_mul2r d) // !divpK // ?(eqp_dvdr _ eq_pq) //.
rewrite (eqp_ltrans (eqp_scale _ _)) ?lc_expn_scalp_neq0 //.
by rewrite (eqp_rtrans (eqp_scale _ _)) ?lc_expn_scalp_neq0. Qed.
Definition gcdp_rec p q :=
let: (p1, q1) :=
if size p < size q then (q, p) else (p, q) in
if p1 == 0 then q1 else
let fix loop (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := modp pp qq in if rr == 0 then qq else
if n is n1.+1 then loop n1 qq rr else rr in loop (size p1) p1 q1.
Definition gcdp := nosimpl gcdp_rec.
Lemma gcd0p : left_id 0 gcdp.
Proof.
move=> p; rewrite /gcdp /gcdp_rec size_poly0 size_poly_gt0 if_neg.
case: ifP => /= [_ | nzp]; first by rewrite eqxx.
by rewrite polySpred !(modp0, nzp) //; case: _.-1 => [|m]; rewrite mod0p eqxx. Qed.
Lemma gcdp0 : right_id 0 gcdp.
Proof.
move=> p; have:= gcd0p p; rewrite /gcdp /gcdp_rec size_poly0 size_poly_gt0.
by rewrite if_neg; case: ifP => /= p0; rewrite ?(eqxx, p0) // (eqP p0). Qed.
Lemma gcdpE p q :
gcdp p q = if size p < size q then gcdp (modp q p) p else gcdp (modp p q) q.
Proof.
pose gcdpE_rec := fix gcdpE_rec (n : nat) (pp qq : {poly R}) {struct n} :=
let rr := modp pp qq in
if rr == 0 then qq else
if n is n1.+1 then gcdpE_rec n1 qq rr else rr.
have Irec: forall k l p q, size q <= k -> size q <= l -> size q < size p -> gcdpE_rec k p q = gcdpE_rec l p q.
+
elim=> [|m Hrec] [|n] //= p1 q1.
-
rewrite leqn0 size_poly_eq0; move/eqP=> -> _.
rewrite size_poly0 size_poly_gt0 modp0 => nzp.
by rewrite (negPf nzp); case: n => [|n] /=; rewrite mod0p eqxx.
-
rewrite leqn0 size_poly_eq0 => _; move/eqP=> ->.
rewrite size_poly0 size_poly_gt0 modp0 => nzp.
by rewrite (negPf nzp); case: m {Hrec} => [|m] /=; rewrite mod0p eqxx.
case: ifP => Epq Sm Sn Sq //; rewrite ?Epq //.
case: (eqVneq q1 0) => [->|nzq].
by case: n m {Sm Sn Hrec} => [|m] [|n] //=; rewrite mod0p eqxx.
apply: Hrec; last by rewrite ltn_modp.
by rewrite -ltnS (leq_trans _ Sm) // ltn_modp.
by rewrite -ltnS (leq_trans _ Sn) // ltn_modp.
case: (eqVneq p 0) => [-> | nzp].
by rewrite mod0p modp0 gcd0p gcdp0 if_same.
case: (eqVneq q 0) => [-> | nzq].
by rewrite mod0p modp0 gcd0p gcdp0 if_same.
rewrite /gcdp /gcdp_rec.
case: ltnP; rewrite (negPf nzp, negPf nzq) //=.
move=> ltpq; rewrite ltn_modp (negPf nzp) //=.
rewrite -(ltn_predK ltpq) /=; case: eqP => [->|].
by case: (size p) => [|[|s]]; rewrite /= modp0 (negPf nzp) // mod0p eqxx.
move/eqP=> nzqp; rewrite (negPf nzp).
apply: Irec => //; last by rewrite ltn_modp.
by rewrite -ltnS (ltn_predK ltpq) (leq_trans _ ltpq) ?leqW // ltn_modp.
by rewrite ltnW // ltn_modp.
move=> leqp; rewrite ltn_modp (negPf nzq) //=.
have p_gt0: size p > 0 by rewrite size_poly_gt0.
rewrite -(prednK p_gt0) /=; case: eqP => [->|].
by case: (size q) => [|[|s]]; rewrite /= modp0 (negPf nzq) // mod0p eqxx.
move/eqP=> nzpq; rewrite (negPf nzq); apply: Irec => //; rewrite ?ltn_modp //.
by rewrite -ltnS (prednK p_gt0) (leq_trans _ leqp) // ltn_modp.
by rewrite ltnW // ltn_modp. Qed.
Lemma size_gcd1p p : size (gcdp 1 p) = 1%N.
Proof.
rewrite gcdpE size_polyC oner_eq0 /= modp1; case: ltnP. by rewrite gcd0p size_polyC oner_eq0.
move/size1_polyC=> e; rewrite e.
case p00: (p`_0 == 0); first by rewrite (eqP p00) modp0 gcdp0 size_poly1.
by rewrite modpC ?p00 // gcd0p size_polyC p00. Qed.
Lemma size_gcdp1 p : size (gcdp p 1) = 1%N.
rewrite gcdpE size_polyC oner_eq0 /= modp1; case: ltnP; last first. by rewrite gcd0p size_polyC oner_eq0.
rewrite ltnS leqn0 size_poly_eq0; move/eqP->; rewrite gcdp0 modp0 size_polyC. by rewrite oner_eq0. Qed.
Lemma gcdpp : idempotent gcdp.
Proof. by move=> p; rewrite gcdpE ltnn modpp gcd0p. Qed.
Lemma dvdp_gcdlr p q : (gcdp p q %| p) && (gcdp p q %| q).
Proof.
elim: {p q}minn {-2}p {-2}q (leqnn (minn (size q) (size p))) => [|r Hrec] p q.
rewrite geq_min !leqn0 !size_poly_eq0.
by case/pred2P=> ->; rewrite (gcdp0, gcd0p) dvdpp ?andbT /=.
case: (eqVneq p 0) => [-> _|nz_p]; first by rewrite gcd0p dvdpp andbT.
case: (eqVneq q 0) => [->|nz_q]; first by rewrite gcdp0 dvdpp /=.
rewrite gcdpE minnC /minn; case: ltnP => [lt_pq | le_pq] le_qr.
suffices: minn (size p) (size (q %% p)) <= r.
by move/Hrec; case/andP=> E1 E2; rewrite E2 (dvdp_mod _ E2).
by rewrite geq_min orbC -ltnS (leq_trans _ le_qr) ?ltn_modp.
suffices: minn (size q) (size (p %% q)) <= r.
by move/Hrec; case/andP=> E1 E2; rewrite E2 andbT (dvdp_mod _ E2).
by rewrite geq_min orbC -ltnS (leq_trans _ le_qr) ?ltn_modp. Qed.
Lemma dvdp_gcdl p q : gcdp p q %| p.
Proof. by case/andP: (dvdp_gcdlr p q). Qed.
Lemma dvdp_gcdr p q : gcdp p q %| q.
Proof. by case/andP: (dvdp_gcdlr p q). Qed.
Lemma leq_gcdpl p q : p != 0 -> size (gcdp p q) <= size p.
Proof. by move=> pn0; move: (dvdp_gcdl p q); apply: dvdp_leq. Qed.
Lemma leq_gcdpr p q : q != 0 -> size (gcdp p q) <= size q.
Proof. by move=> qn0; move: (dvdp_gcdr p q); apply: dvdp_leq. Qed.
Lemma dvdp_gcd p m n : p %| gcdp m n = (p %| m) && (p %| n).
Proof.
apply/idP/andP=> [dv_pmn | [dv_pm dv_pn]].
by rewrite ?(dvdp_trans dv_pmn) ?dvdp_gcdl ?dvdp_gcdr.
move: (leqnn (minn (size n) (size m))) dv_pm dv_pn.
elim: {m n}minn {-2}m {-2}n => [|r Hrec] m n.
rewrite geq_min !leqn0 !size_poly_eq0.
by case/pred2P=> ->; rewrite (gcdp0, gcd0p).
case: (eqVneq m 0) => [-> _|nz_m]; first by rewrite gcd0p /=.
case: (eqVneq n 0) => [->|nz_n]; first by rewrite gcdp0 /=.
rewrite gcdpE minnC /minn; case: ltnP => Cnm le_r dv_m dv_n.
apply: Hrec => //; last by rewrite -(dvdp_mod _ dv_m).
by rewrite geq_min orbC -ltnS (leq_trans _ le_r) ?ltn_modp.
apply: Hrec => //; last by rewrite -(dvdp_mod _ dv_n).
by rewrite geq_min orbC -ltnS (leq_trans _ le_r) ?ltn_modp. Qed.
Lemma gcdpC : forall p q, gcdp p q %= gcdp q p.
Proof. by move=> p q; rewrite /eqp !dvdp_gcd !dvdp_gcdl !dvdp_gcdr. Qed.
Lemma gcd1p p : gcdp 1 p %= 1.
Proof.
rewrite -size_poly_eq1 gcdpE size_poly1; case: ltnP. by rewrite modp1 gcd0p size_poly1 eqxx.
move/size1_polyC=> e; rewrite e.
case p00: (p`_0 == 0); first by rewrite (eqP p00) modp0 gcdp0 size_poly1.
by rewrite modpC ?p00 // gcd0p size_polyC p00. Qed.
Lemma gcdp1 p : gcdp p 1 %= 1.
Proof.
by rewrite (eqp_ltrans (gcdpC _ _)) gcd1p. Qed.
Lemma gcdp_addl_mul p q r : gcdp r (p * r + q) %= gcdp r q.
Proof.
suff h m n d: gcdp d n %| gcdp d (m * d + n).
apply/andP; split=> //; rewrite {2}(_ : q = (- p) * r + (p * r + q)) ?H //. by rewrite GRing.mulNr GRing.addKr.
by rewrite dvdp_gcd dvdp_gcdl /= dvdp_addr ?dvdp_gcdr ?dvdp_mull ?dvdp_gcdl. Qed.
Lemma gcdp_addl m n : gcdp m (m + n) %= gcdp m n.
Proof. by rewrite -{2}(mul1r m) gcdp_addl_mul. Qed.
Lemma gcdp_addr m n : gcdp m (n + m) %= gcdp m n.
Proof. by rewrite addrC gcdp_addl. Qed.
Lemma gcdp_mull m n : gcdp n (m * n) %= n.
Proof.
case: (eqVneq n 0) => [-> | nn0]; first by rewrite gcd0p mulr0 eqpxx.
case: (eqVneq m 0) => [-> | mn0]; first by rewrite mul0r gcdp0 eqpxx.
rewrite gcdpE modp_mull gcd0p size_mul //; case: ifP; first by rewrite eqpxx.
rewrite (polySpred mn0) addSn /= -{1}[size n]add0n ltn_add2r; move/negbT.
rewrite -ltnNge prednK ?size_poly_gt0 // leq_eqVlt ltnS leqn0 size_poly_eq0.
rewrite (negPf mn0) orbF; case/size_poly1P=> c cn0 -> {mn0 m}; rewrite mul_polyC.
suff ->: n %% (c *: n) = 0 by rewrite gcd0p; apply: eqp_scale.
by apply/modp_eq0P; rewrite dvdp_scalel. Qed.
Lemma gcdp_mulr m n : gcdp n (n * m) %= n.
Proof. by rewrite mulrC gcdp_mull. Qed.
Lemma gcdp_scalel c m n : c != 0 -> gcdp (c *: m) n %= gcdp m n.
Proof.
move=> cn0; rewrite /eqp dvdp_gcd [gcdp m n %| _]dvdp_gcd !dvdp_gcdr !andbT.
apply/andP; split; last first.
by apply: dvdp_trans (dvdp_gcdl _ _) _; rewrite dvdp_scaler.
by apply: dvdp_trans (dvdp_gcdl _ _) _; rewrite dvdp_scalel. Qed.
Lemma gcdp_scaler c m n : c != 0 -> gcdp m (c *: n) %= gcdp m n.
Proof.
move=> cn0; apply: eqp_trans (gcdpC _ _) _.
by apply: eqp_trans (gcdp_scalel _ _ _) _ => //; apply: gcdpC. Qed.
Lemma dvdp_gcd_idl m n : m %| n -> gcdp m n %= m.
Proof.
case: (eqVneq m 0) => [-> | mn0].
by rewrite dvd0p => /eqP->; rewrite gcdp0 eqpxx.
rewrite dvdp_eq; move/eqP; move/(f_equal (gcdp m)) => h.
apply: eqp_trans (gcdp_mull (n %/ m) _); rewrite -h eqp_sym gcdp_scaler //.
by rewrite expf_neq0 // lead_coef_eq0. Qed.
Lemma dvdp_gcd_idr m n : n %| m -> gcdp m n %= n.
Proof.
by move/dvdp_gcd_idl=> h; apply: eqp_trans h; apply: gcdpC. Qed.
Lemma gcdp_exp p k l : gcdp (p ^+ k) (p ^+ l) %= p ^+ minn k l.
Proof.
wlog leqmn: k l / k <= l.
move=> hwlog; case: (leqP k l); first exact: hwlog.
by move/ltnW; rewrite minnC; move/hwlog=> h; apply: eqp_trans h; apply: gcdpC.
rewrite (minn_idPl leqmn); move/subnK: leqmn <-; rewrite exprD.
by apply: eqp_trans (gcdp_mull _ _) _; apply: eqpxx. Qed.
Lemma gcdp_eq0 p q : gcdp p q == 0 = (p == 0) && (q == 0).
Proof.
apply/idP/idP; last by case/andP=> /eqP -> /eqP->; rewrite gcdp0.
have h m n: gcdp m n == 0 -> (m == 0). by rewrite -(dvd0p m); move/eqP <-; rewrite dvdp_gcdl.
by move=> ?; rewrite (h _ q) // (h _ p) // -eqp0 (eqp_ltrans (gcdpC _ _)) eqp0. Qed.
Lemma eqp_gcdr p q r : q %= r -> gcdp p q %= gcdp p r.
Proof.
move=> eqr; rewrite /eqp !(dvdp_gcd, dvdp_gcdl, andbT) /=.
by rewrite -(eqp_dvdr _ eqr) dvdp_gcdr (eqp_dvdr _ eqr) dvdp_gcdr. Qed.
Lemma eqp_gcdl r p q : p %= q -> gcdp p r %= gcdp q r.
move=> eqr; rewrite /eqp !(dvdp_gcd, dvdp_gcdr, andbT) /=.
by rewrite -(eqp_dvdr _ eqr) dvdp_gcdl (eqp_dvdr _ eqr) dvdp_gcdl. Qed.
Lemma eqp_gcd p1 p2 q1 q2 :
p1 %= p2 -> q1 %= q2 -> gcdp p1 q1 %= gcdp p2 q2.
Proof.
move=> e1 e2.
by apply: eqp_trans (eqp_gcdr _ e2); apply: eqp_trans (eqp_gcdl _ e1). Qed.
Lemma eqp_rgcd_gcd p q : rgcdp p q %= gcdp p q.
Proof.
move: (leqnn (minn (size p) (size q))); move: {2}(minn (size p) (size q)) => n.
elim: n p q => [p q|n ihn p q hs].
rewrite leqn0 /minn; case: ltnP => _; rewrite size_poly_eq0; move/eqP->. by rewrite gcd0p rgcd0p eqpxx. by rewrite gcdp0 rgcdp0 eqpxx.
case: (eqVneq p 0) => [-> | pn0]; first by rewrite gcd0p rgcd0p eqpxx.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite gcdp0 rgcdp0 eqpxx.
rewrite gcdpE rgcdpE; case: ltnP => sp.
have e := (eqp_rmod_mod q p); move: (e); move/(eqp_gcdl p) => h.
apply: eqp_trans h; apply: ihn; rewrite (eqp_size e) geq_min.
by rewrite -ltnS (leq_trans _ hs) // (minn_idPl (ltnW _)) ?ltn_modp.
have e := (eqp_rmod_mod p q); move: (e); move/(eqp_gcdl q) => h.
apply: eqp_trans h; apply: ihn; rewrite (eqp_size e) geq_min.
by rewrite -ltnS (leq_trans _ hs) // (minn_idPr _) ?ltn_modp. Qed.
Lemma gcdp_modr m n : gcdp m (n %% m) %= gcdp m n.
Proof.
case: (eqVneq m 0) => [-> | mn0]; first by rewrite modp0 eqpxx.
have: (lead_coef m) ^+ (scalp n m) != 0 by rewrite expf_neq0 // lead_coef_eq0.
move/gcdp_scaler; move/(_ m n) => h; apply: eqp_trans h; rewrite divp_eq. by rewrite eqp_sym gcdp_addl_mul. Qed.
Lemma gcdp_modl m n : gcdp (m %% n) n %= gcdp m n.
Proof.
apply: eqp_trans (gcdpC _ _) _; apply: eqp_trans (gcdp_modr _ _) _. exact: gcdpC. Qed.
Lemma gcdp_def d m n :
d %| m -> d %| n ->
(forall d', d' %| m -> d' %| n -> d' %| d) -> gcdp m n %= d.
Proof.
move=> dm dn h; rewrite /eqp dvdp_gcd dm dn !andbT.
by apply: h; [apply: dvdp_gcdl | apply: dvdp_gcdr]. Qed.
Definition coprimep p q := size (gcdp p q) == 1%N.
Lemma coprimep_size_gcd p q : coprimep p q -> size (gcdp p q) = 1%N.
Proof. by rewrite /coprimep => /eqP. Qed.
Lemma coprimep_def p q : (coprimep p q) = (size (gcdp p q) == 1%N).
Proof.
done. Qed.
Lemma coprimep_scalel c m n : c != 0 -> coprimep (c *: m) n = coprimep m n.
Proof. by move=> ?; rewrite !coprimep_def (eqp_size (gcdp_scalel _ _ _)). Qed.
Lemma coprimep_scaler c m n : c != 0 -> coprimep m (c *: n) = coprimep m n.
Proof. by move=> ?; rewrite !coprimep_def (eqp_size (gcdp_scaler _ _ _)). Qed.
Lemma coprimepp p : coprimep p p = (size p == 1%N).
Proof. by rewrite coprimep_def gcdpp. Qed.
Lemma gcdp_eqp1 p q : gcdp p q %= 1 = (coprimep p q).
Proof. by rewrite coprimep_def size_poly_eq1. Qed.
Lemma coprimep_sym p q : coprimep p q = coprimep q p.
Proof.
by rewrite -!gcdp_eqp1; apply: eqp_ltrans; rewrite gcdpC. Qed.
Lemma coprime1p p : coprimep 1 p.
Proof.
rewrite /coprimep -[1%N](size_poly1 R); apply/eqP; apply: eqp_size. exact: gcd1p. Qed.
Lemma coprimep1 p : coprimep p 1.
Proof. by rewrite coprimep_sym; apply: coprime1p. Qed.
Lemma coprimep0 p : coprimep p 0 = (p %= 1).
Proof. by rewrite /coprimep gcdp0 size_poly_eq1. Qed.
Lemma coprime0p p : coprimep 0 p = (p %= 1).
Proof. by rewrite coprimep_sym coprimep0. Qed.
Lemma coprimepP p q :
reflect (forall d, d %| p -> d %| q -> d %= 1) (coprimep p q).
Proof.
apply: (iffP idP) => [|h].
rewrite /coprimep; move/eqP=> hs d dvddp dvddq.
have dvddg: d %| gcdp p q by rewrite dvdp_gcd dvddp dvddq.
by apply: (dvdp_eqp1 dvddg); rewrite -size_poly_eq1; apply/eqP.
case/andP: (dvdp_gcdlr p q) => h1 h2. by rewrite /coprimep size_poly_eq1; apply: h. Qed.
Lemma coprimepPn p q : p != 0 ->
reflect (exists d, (d %| gcdp p q) && ~~ (d %= 1))
(~~ coprimep p q).
Proof.
move=> p0; apply: (iffP idP).
by rewrite -gcdp_eqp1 => ng1; exists (gcdp p q); rewrite dvdpp /=.
case=> d; case/andP=> dg; apply: contra; rewrite -gcdp_eqp1 => g1.
by move: dg; rewrite (eqp_dvdr _ g1) dvdp1 size_poly_eq1. Qed.
Lemma coprimep_dvdl q p r : r %| q -> coprimep p q -> coprimep p r.
Proof.
move=> rq cpq; apply/coprimepP=> d dp dr; move/coprimepP: cpq => cpq'.
by apply: cpq'; rewrite // (dvdp_trans dr). Qed.
Lemma coprimep_dvdr p q r : r %| p -> coprimep p q -> coprimep r q.
Proof.
move=> rp; rewrite ![coprimep _ q]coprimep_sym. by move/coprimep_dvdl; apply. Qed.
Lemma coprimep_modl p q : coprimep (p %% q) q = coprimep p q.
Proof.
symmetry; rewrite !coprimep_def.
case: (ltnP (size p) (size q)) => hpq; first by rewrite modp_small. by rewrite gcdpE ltnNge hpq. Qed.
Lemma coprimep_modr q p : coprimep q (p %% q) = coprimep q p.
Proof.
by rewrite ![coprimep q _]coprimep_sym coprimep_modl. Qed.
Lemma rcoprimep_coprimep q p : rcoprimep q p = coprimep q p.
Proof.
by rewrite /coprimep /rcoprimep; rewrite (eqp_size (eqp_rgcd_gcd _ _)). Qed.
Lemma eqp_coprimepr p q r : q %= r -> coprimep p q = coprimep p r.
Proof.
by rewrite -!gcdp_eqp1; move/(eqp_gcdr p) => h1; apply: (eqp_ltrans h1). Qed.
Lemma eqp_coprimepl p q r : q %= r -> coprimep q p = coprimep r p.
Proof. by rewrite !(coprimep_sym _ p); apply: eqp_coprimepr. Qed.
Fixpoint egcdp_rec p q k {struct k} : {poly R} * {poly R} :=
if k is k'.+1 then
if q == 0 then (1, 0) else
let: (u, v) := egcdp_rec q (p %% q) k' in
(lead_coef q ^+ scalp p q *: v, (u - v * (p %/ q))) else (1, 0).
Definition egcdp p q :=
if size q <= size p then egcdp_rec p q (size q) else let e := egcdp_rec q p (size p) in (e.2, e.1).
Lemma egcdp0 p : egcdp p 0 = (1, 0).
Proof. by rewrite /egcdp size_poly0. Qed.
Lemma egcdp_recP : forall k p q, q != 0 -> size q <= k -> size q <= size p ->
let e := (egcdp_rec p q k) in
[/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q].
Proof.
elim=> [|k ihk] p q /= qn0; first by rewrite leqn0 size_poly_eq0 (negPf qn0).
move=> sqSn qsp; case: (eqVneq q 0) => q0; first by rewrite q0 eqxx in qn0.
rewrite (negPf qn0).
have sp: size p > 0 by apply: leq_trans qsp; rewrite size_poly_gt0.
case: (eqVneq (p %% q) 0) => [r0 | rn0] /=.
rewrite r0 /egcdp_rec; case: k ihk sqSn => [|n] ihn sqSn /=.
rewrite !scaler0 !mul0r subr0 add0r mul1r size_poly0 size_poly1. by rewrite dvdp_gcd_idr /dvdp ?r0.
rewrite !eqxx mul0r scaler0 /= mul0r add0r subr0 mul1r size_poly0 size_poly1.
by rewrite dvdp_gcd_idr /dvdp ?r0 //.
have h1: size (p %% q) <= k.
by rewrite -ltnS; apply: leq_trans sqSn; rewrite ltn_modp.
have h2: size (p %% q) <= size q by rewrite ltnW // ltn_modp.
have:= (ihk q (p %% q) rn0 h1 h2).
case: (egcdp_rec _ _) => u v /= => [[ihn'1 ihn'2 ihn'3]].
rewrite gcdpE ltnNge qsp //= (eqp_ltrans (gcdpC _ _)); split; last first.
-
apply: (eqp_trans ihn'3).
rewrite mulrBl addrCA -scalerAl scalerAr -mulrA -mulrBr.
by rewrite divp_eq addrAC subrr add0r eqpxx.
-
apply: (leq_trans (size_add _ _)).
case: (eqVneq v 0) => [-> | vn0].
rewrite mul0r size_opp size_poly0 maxn0; apply: leq_trans ihn'1 _. exact: leq_modp.
case: (eqVneq (p %/ q) 0) => [-> | qqn0].
rewrite mulr0 size_opp size_poly0 maxn0; apply: leq_trans ihn'1 _. exact: leq_modp.
rewrite geq_max (leq_trans ihn'1) ?leq_modp //= size_opp size_mul //.
move: (ihn'2); rewrite -(leq_add2r (size (p %/ q))).
have: size v + size (p %/ q) > 0 by rewrite addn_gt0 size_poly_gt0 vn0.
have: size q + size (p %/ q) > 0 by rewrite addn_gt0 size_poly_gt0 qn0.
do 2!move/prednK=> {1}<-; rewrite ltnS => h; apply: leq_trans h _.
rewrite size_divp // addnBA; last by apply: leq_trans qsp; apply: leq_pred.
rewrite addnC -addnBA ?leq_pred //; move: qn0; rewrite -size_poly_eq0 -lt0n. by move/prednK=> {1}<-; rewrite subSnn addn1.
-
by rewrite size_scale // lc_expn_scalp_neq0. Qed.
Lemma egcdpP p q :
p != 0 -> q != 0 ->
forall (e := egcdp p q),
[/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q].
Proof.
move=> pn0 qn0; rewrite /egcdp; case: (leqP (size q) (size p)) => /= hp. by apply: egcdp_recP.
move/ltnW: hp => hp; case: (egcdp_recP pn0 (leqnn (size p)) hp) => h1 h2 h3.
by split=> //; rewrite (eqp_ltrans (gcdpC _ _)) addrC. Qed.
Lemma egcdpE p q (e := egcdp p q) :
gcdp p q %= e.1 * p + e.2 * q.
Proof.
rewrite {}/e; have [-> /= | qn0] := eqVneq q 0.
by rewrite gcdp0 egcdp0 mul1r mulr0 addr0.
have [p0 | pn0] := eqVneq p 0; last by case: (egcdpP pn0 qn0).
rewrite p0 gcd0p mulr0 add0r /egcdp size_poly0 leqn0 size_poly_eq0 (negPf qn0). by rewrite /= mul1r. Qed.
Lemma Bezoutp p q :
exists u, u.1 * p + u.2 * q %= (gcdp p q).
Proof.
case: (eqVneq p 0) => [-> | pn0].
by rewrite gcd0p; exists (0, 1); rewrite mul0r mul1r add0r.
case: (eqVneq q 0) => [-> | qn0].
by rewrite gcdp0; exists (1, 0); rewrite mul0r mul1r addr0.
pose e := egcdp p q; exists e; rewrite eqp_sym. by case: (egcdpP pn0 qn0). Qed.
Lemma Bezout_coprimepP : forall p q,
reflect (exists u, u.1 * p + u.2 * q %= 1)
(coprimep p q).
Proof.
move=> p q; rewrite -gcdp_eqp1; apply: (iffP idP) => [g1|].
by case: (Bezoutp p q) => [[u v] Puv]; exists (u, v); apply: eqp_trans g1.
case=> [[u v]]; rewrite eqp_sym => Puv; rewrite /eqp (eqp_dvdr _ Puv).
by rewrite dvdp_addr dvdp_mull ?dvdp_gcdl ?dvdp_gcdr //= dvd1p. Qed.
Lemma coprimep_root p q x : coprimep p q -> root p x -> q.[x] != 0.
Proof.
case/Bezout_coprimepP=> [[u v] euv] px0.
move/eqpP: euv => [[c1 c2]] /andP /= [c1n0 c2n0 e].
suffices: c1 * (v.[x] * q.[x]) != 0.
by rewrite !mulf_eq0 !negb_or c1n0 /=; case/andP.
move/(f_equal (fun t => horner t x)): e; rewrite /= !hornerZ hornerD.
by rewrite !hornerM (eqP px0) mulr0 add0r hornerC mulr1; move->. Qed.
Lemma Gauss_dvdpl p q d : coprimep d q -> (d %| p * q) = (d %| p).
Proof.
move/Bezout_coprimepP=> [[u v] Puv]; apply/idP/idP; last exact: dvdp_mulr.
move: Puv; move/(eqp_mull p); rewrite mulr1 mulrDr eqp_sym => peq dpq.
rewrite (eqp_dvdr _ peq) dvdp_addr; first by rewrite mulrA mulrAC dvdp_mulr.
by rewrite mulrA dvdp_mull ?dvdpp. Qed.
Lemma Gauss_dvdpr p q d : coprimep d q -> (d %| q * p) = (d %| p).
Proof. by rewrite mulrC; apply: Gauss_dvdpl. Qed.
Lemma Gauss_dvdp m n p : coprimep m n -> (m * n %| p) = (m %| p) && (n %| p).
Proof.
case: (eqVneq m 0) => [-> | mn0].
by rewrite coprime0p => /eqp_dvdl->; rewrite !mul0r dvd0p dvd1p andbT.
case: (eqVneq n 0) => [-> | nn0].
by rewrite coprimep0 => /eqp_dvdl->; rewrite !mulr0 dvd1p.
move=> hc; apply/idP/idP.
move/Gauss_dvdpl: hc => <- h; move/(dvdp_mull m): (h); rewrite dvdp_mul2l //.
move->; move/(dvdp_mulr n): (h); rewrite dvdp_mul2r // andbT. exact: dvdp_mulr.
case/andP=> dmp dnp; move: (dnp); rewrite dvdp_eq.
set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> e2.
have:= (sym_eq (Gauss_dvdpl q2 hc)); rewrite -e2.
have ->: m %| c2 *: p by rewrite -mul_polyC dvdp_mull.
rewrite dvdp_eq; set c3 := _ ^+ _; set q3 := _ %/ _; move/eqP=> e3.
apply: (@eq_dvdp (c3 * c2) q3).
by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0.
by rewrite mulrA -e3 -scalerAl -e2 scalerA. Qed.
Lemma Gauss_gcdpr p m n : coprimep p m -> gcdp p (m * n) %= gcdp p n.
Proof.
move=> co_pm; apply/eqP; rewrite /eqp !dvdp_gcd !dvdp_gcdl /= andbC.
rewrite dvdp_mull ?dvdp_gcdr // -(@Gauss_dvdpl _ m). by rewrite mulrC dvdp_gcdr.
apply/coprimepP=> d; rewrite dvdp_gcd; case/andP=> hdp _ hdm. by move/coprimepP: co_pm; apply. Qed.
Lemma Gauss_gcdpl p m n : coprimep p n -> gcdp p (m * n) %= gcdp p m.
Proof. by move=> co_pn; rewrite mulrC Gauss_gcdpr. Qed.
Lemma coprimep_mulr p q r :
coprimep p (q * r) = (coprimep p q && coprimep p r).
Proof.
apply/coprimepP/andP=> [hp | [/coprimepP-hq hr]].
by split; apply/coprimepP=> d dp dq; rewrite hp //; [apply/dvdp_mulr | apply/dvdp_mull].
move=> d dp dqr; move/(_ _ dp) in hq.
rewrite Gauss_dvdpl in dqr; first exact: hq. by move/coprimep_dvdr: hr; apply. Qed.
Lemma coprimep_mull p q r :
coprimep (q * r) p = (coprimep q p && coprimep r p).
Proof.
by rewrite ![coprimep _ p]coprimep_sym coprimep_mulr. Qed.
Lemma modp_coprime k u n : k != 0 -> (k * u) %% n %= 1 -> coprimep k n.
Proof.
move=> kn0 hmod; apply/Bezout_coprimepP.
exists (((lead_coef n) ^+ (scalp (k * u) n) *: u), (- (k * u %/ n))).
rewrite -scalerAl mulrC (divp_eq (u * k) n) mulNr -addrAC subrr add0r. by rewrite mulrC. Qed.
Lemma coprimep_pexpl k m n : 0 < k -> coprimep (m ^+ k) n = coprimep m n.
Proof.
case: k => // k _; elim: k => [|k IHk]; first by rewrite expr1.
by rewrite exprS coprimep_mull -IHk andbb. Qed.
Lemma coprimep_pexpr k m n : 0 < k -> coprimep m (n ^+ k) = coprimep m n.
Proof. by move=> k_gt0; rewrite !(coprimep_sym m) coprimep_pexpl. Qed.
Lemma coprimep_expl k m n : coprimep m n -> coprimep (m ^+ k) n.
Proof.
by case: k => [|k] co_pm; rewrite ?coprime1p // coprimep_pexpl. Qed.
Lemma coprimep_expr k m n : coprimep m n -> coprimep m (n ^+ k).
Proof. by rewrite !(coprimep_sym m); apply: coprimep_expl. Qed.
Lemma gcdp_mul2l p q r : gcdp (p * q) (p * r) %= (p * gcdp q r).
Proof.
case: (eqVneq p 0) => [->|hp]; first by rewrite !mul0r gcdp0 eqpxx.
rewrite /eqp !dvdp_gcd !dvdp_mul2l // dvdp_gcdr dvdp_gcdl !andbT.
move: (Bezoutp q r) => [[u v]] huv.
rewrite eqp_sym in huv; rewrite (eqp_dvdr _ (eqp_mull _ huv)).
rewrite mulrDr ![p * (_ * _)]mulrCA.
by apply: dvdp_add; rewrite dvdp_mull // (dvdp_gcdr, dvdp_gcdl). Qed.
Lemma gcdp_mul2r q r p : gcdp (q * p) (r * p) %= (gcdp q r * p).
Proof. by rewrite ![_ * p]GRing.mulrC gcdp_mul2l. Qed.
Lemma mulp_gcdr p q r :
r * (gcdp p q) %= gcdp (r * p) (r * q).
Proof. by rewrite eqp_sym gcdp_mul2l. Qed.
Lemma mulp_gcdl p q r : (gcdp p q) * r %= gcdp (p * r) (q * r).
Proof. by rewrite eqp_sym gcdp_mul2r. Qed.
Lemma coprimep_div_gcd p q : (p != 0) || (q != 0) ->
coprimep (p %/ (gcdp p q)) (q %/ gcdp p q).
Proof.
move=> hpq.
have gpq0: gcdp p q != 0 by rewrite gcdp_eq0 negb_and.
rewrite -gcdp_eqp1 -(@eqp_mul2r (gcdp p q)) // mul1r.
have: gcdp p q %| p by rewrite dvdp_gcdl.
have: gcdp p q %| q by rewrite dvdp_gcdr.
rewrite !dvdp_eq eq_sym; move/eqP=> hq; rewrite eq_sym; move/eqP=> hp.
rewrite (eqp_ltrans (mulp_gcdl _ _ _)) hq hp.
have lcn0 k: (lead_coef (gcdp p q)) ^+ k != 0.
by rewrite expf_neq0 ?lead_coef_eq0.
by apply: eqp_gcd; rewrite ?eqp_scale. Qed.
Lemma divp_eq0 p q :
(p %/ q == 0) = [|| p == 0, q == 0| size p < size q].
Proof.
apply/eqP/idP=> [d0|]; last first.
case/or3P; [by move/eqP->; rewrite div0p | by move/eqP->; rewrite divp0|]. by move/divp_small.
case: (eqVneq p 0) => [->|pn0]; first by rewrite eqxx.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite eqxx orbT.
move: (divp_eq p q); rewrite d0 mul0r add0r.
move/(f_equal (fun x : {poly R} => size x)).
by rewrite size_scale ?lc_expn_scalp_neq0 // => ->; rewrite ltn_modp qn0 !orbT. Qed.
Lemma dvdp_div_eq0 p q : q %| p -> (p %/ q == 0) = (p == 0).
Proof.
move=> dvdp_qp; have [->|p_neq0] := altP (p =P 0); first by rewrite div0p eqxx.
rewrite divp_eq0 ltnNge dvdp_leq // (negPf p_neq0) orbF /=.
by apply: contraTF dvdp_qp => /eqP->; rewrite dvd0p. Qed.
Lemma Bezout_coprimepPn p q :
p != 0 -> q != 0 ->
reflect (exists2 uv : {poly R} * {poly R},
(0 < size uv.1 < size q) && (0 < size uv.2 < size p) & uv.1 * p = uv.2 * q)
(~~ (coprimep p q)).
move=> pn0 qn0; apply: (iffP idP); last first.
case=> [[u v] /= /andP[/andP[ps1 s1] /andP[ps2 s2]] e].
have: ~~ (size (q * p) <= size (u * p)).
rewrite -ltnNge !size_mul // -?size_poly_gt0 // (polySpred pn0) !addnS. by rewrite ltn_add2r.
apply: contra => ?; apply: dvdp_leq; rewrite ?mulf_neq0 // -?size_poly_gt0 //.
by rewrite mulrC Gauss_dvdp // dvdp_mull // e dvdp_mull.
rewrite coprimep_def neq_ltn.
case/orP; first by rewrite ltnS leqn0 size_poly_eq0 gcdp_eq0 -[p == 0]negbK pn0.
case sg: (size (gcdp p q)) => [|n] //; case: n sg => [|n] // sg _.
move: (dvdp_gcdl p q); rewrite dvdp_eq; set c1 := _ ^+ _; move/eqP=> hu1.
move: (dvdp_gcdr p q); rewrite dvdp_eq; set c2 := _ ^+ _; move/eqP=> hv1.
exists (c1 *: (q %/ gcdp p q), c2 *: (p %/ gcdp p q)); last first.
by rewrite -!{1}scalerAl !scalerAr hu1 hv1 mulrCA.
rewrite !{1}size_scale ?lc_expn_scalp_neq0 //= !size_poly_gt0 !divp_eq0.
rewrite gcdp_eq0 !(negPf pn0) !(negPf qn0) /= -!leqNgt leq_gcdpl //.
rewrite leq_gcdpr //= !ltn_divpl -?size_poly_eq0 ?sg //.
rewrite !size_mul // -?size_poly_eq0 ?sg // ![(_ + n.+2)%N]addnS /=.
by rewrite -{1}(addn0 (size p)) -{1}(addn0 (size q)) !ltn_add2l. Qed.
Lemma dvdp_pexp2r m n k : k > 0 -> (m ^+ k %| n ^+ k) = (m %| n).
Proof.
move=> k_gt0; apply/idP/idP; last exact: dvdp_exp2r.
case: (eqVneq n 0) => [-> | nn0] //; case: (eqVneq m 0) => [-> | mn0].
move/prednK: k_gt0 => {1}<-; rewrite exprS mul0r //= !dvd0p expf_eq0. by case/andP=> _ ->.
set d := gcdp m n; have:= (dvdp_gcdr m n); rewrite -/d dvdp_eq.
set c1 := _ ^+ _; set n' := _ %/ _; move/eqP=> def_n.
have:= (dvdp_gcdl m n); rewrite -/d dvdp_eq.
set c2 := _ ^+ _; set m' := _ %/ _; move/eqP=> def_m.
have dn0: d != 0 by rewrite gcdp_eq0 negb_and nn0 orbT.
have c1n0: c1 != 0 by rewrite !expf_neq0 // lead_coef_eq0.
have c2n0: c2 != 0 by rewrite !expf_neq0 // lead_coef_eq0.
rewrite -(@dvdp_scaler (c1 ^+ k)) ?expf_neq0 ?lead_coef_eq0 //.
have c2k_n0: c2 ^+ k != 0 by rewrite !expf_neq0 // lead_coef_eq0.
rewrite -(@dvdp_scalel (c2 ^+ k)) // -!exprZn def_m def_n !exprMn.
rewrite dvdp_mul2r ?expf_neq0 //.
have: coprimep (m' ^+ k) (n' ^+ k).
rewrite coprimep_pexpl // coprimep_pexpr //; apply: coprimep_div_gcd.
by rewrite nn0 orbT.
move/coprimepP=> hc hd.
have /size_poly1P[c cn0 em']: size m' == 1%N.
case: (eqVneq m' 0) => [m'0| m'_n0].
move/eqP: def_m; rewrite m'0 mul0r scale_poly_eq0.
by rewrite (negPf mn0) (negPf c2n0).
have:= (hc _ (dvdpp _) hd); rewrite -size_poly_eq1.
rewrite polySpred; last by rewrite expf_eq0 negb_and m'_n0 orbT.
rewrite size_exp eqSS muln_eq0; move: k_gt0; rewrite lt0n; move/negPf->.
by rewrite orbF -{2}(@prednK (size m')) ?lt0n // size_poly_eq0.
rewrite -(@dvdp_scalel c2) // def_m em' mul_polyC dvdp_scalel //.
by rewrite -(@dvdp_scaler c1) // def_n dvdp_mull. Qed.
Lemma root_gcd p q x :
root (gcdp p q) x = root p x && root q x.
Proof.
rewrite /= !root_factor_theorem; apply/idP/andP=> [dg |[dp dq]].
by split; apply: dvdp_trans dg _; rewrite ?(dvdp_gcdl, dvdp_gcdr).
have:= (Bezoutp p q) => [[[u v]]]; rewrite eqp_sym => e.
by rewrite (eqp_dvdr _ e) dvdp_addl dvdp_mull. Qed.
Lemma root_biggcd : forall x (ps : seq {poly R}),
root (\big[gcdp/0]_(p <- ps) p) x = all (fun p => root p x) ps.
Proof.
move=> x; elim; first by rewrite big_nil root0. by move=> p ps ihp; rewrite big_cons /= root_gcd ihp. Qed.
Fixpoint gdcop_rec q p k :=
if k is m.+1 then
if coprimep p q then p
else gdcop_rec q (divp p (gcdp p q)) m else (q == 0)%:R.
Definition gdcop q p := gdcop_rec q p (size p).
Variant gdcop_spec q p : {poly R} -> Type :=
GdcopSpec r of (dvdp r p)
& ((coprimep r q) || (p == 0))
& (forall d, dvdp d p -> coprimep d q -> dvdp d r) : gdcop_spec q p r.
Lemma gdcop0 q : gdcop q 0 = (q == 0)%:R.
Proof. by rewrite /gdcop size_poly0. Qed.
Lemma gdcop_recP : forall q p k, size p <= k -> gdcop_spec q p (gdcop_rec q p k).
Proof.
move=> q p k; elim: k p => [p | k ihk p] /=.
rewrite leqn0 size_poly_eq0; move/eqP->.
case q0: (_ == _); split; rewrite ?coprime1p // ?eqxx ?orbT //. by move=> d _; rewrite (eqP q0) coprimep0 dvdp1 size_poly_eq1.
move=> hs; case cop: (coprimep _ _); first by split; rewrite ?dvdpp ?cop.
case (eqVneq p 0) => [-> | p0].
by rewrite div0p; apply: ihk; rewrite size_poly0 leq0n.
case: (eqVneq q 0) => [-> | q0].
rewrite gcdp0 divpp ?p0 //= => {hs ihk}; case: k => /=.
rewrite eqxx; split; rewrite ?dvd1p ?coprimep0 ?eqpxx //=. by move=> d _; rewrite coprimep0 dvdp1 size_poly_eq1.
move=> n; rewrite coprimep0 polyC_eqp1 //; rewrite lc_expn_scalp_neq0.
split; first by rewrite (@eqp_dvdl 1) ?dvd1p // polyC_eqp1 lc_expn_scalp_neq0.
by rewrite coprimep0 polyC_eqp1 // ?lc_expn_scalp_neq0. by move=> d _; rewrite coprimep0; move/eqp_dvdl->; rewrite dvd1p.
move: (dvdp_gcdl p q); rewrite dvdp_eq; move/eqP=> e.
have sgp: size (gcdp p q) <= size p.
by apply: dvdp_leq; rewrite ?gcdp_eq0 ?p0 ?q0 // dvdp_gcdl.
have: p %/ gcdp p q != 0; last move/negPf=> p'n0.
move: (dvdp_mulIl (p %/ gcdp p q) (gcdp p q)); move/dvdpN0; apply; rewrite -e.
by rewrite scale_poly_eq0 negb_or lc_expn_scalp_neq0.
have gn0: gcdp p q != 0.
move: (dvdp_mulIr (p %/ gcdp p q) (gcdp p q)); move/dvdpN0; apply; rewrite -e.
by rewrite scale_poly_eq0 negb_or lc_expn_scalp_neq0.
have sp': size (p %/ (gcdp p q)) <= k.
rewrite size_divp ?sgp // leq_subLR (leq_trans hs) //.
rewrite -subn_gt0 addnK -subn1 ltn_subRL addn0 ltnNge leq_eqVlt.
by rewrite [_ == _]cop ltnS leqn0 size_poly_eq0 (negPf gn0).
case (ihk _ sp') => r' dr'p'; first rewrite p'n0 orbF => cr'q maxr'.
constructor=> //=; rewrite ?(negPf p0) ?orbF //.
exact/(dvdp_trans dr'p')/divp_dvd/dvdp_gcdl.
move=> d dp cdq; apply: maxr'; last by rewrite cdq.
case dpq: (d %| gcdp p q).
move: (dpq); rewrite dvdp_gcd dp /= => dq; apply: dvdUp; move: cdq.
apply: contraLR => nd1; apply/coprimepPn; last first.
by exists d; rewrite dvdp_gcd dvdpp dq nd1.
move/negP: p0; move/negP; apply: contra => d0; move: dp; rewrite (eqP d0). by rewrite dvd0p.
move: (dp); apply: contraLR => ndp'.
rewrite (@eqp_dvdr ((lead_coef (gcdp p q) ^+ scalp p (gcdp p q)) *: p)).
by rewrite e; rewrite Gauss_dvdpl //; apply: (coprimep_dvdl (dvdp_gcdr _ _)).
by rewrite eqp_sym eqp_scale // lc_expn_scalp_neq0. Qed.
Lemma gdcopP q p : gdcop_spec q p (gdcop q p).
Proof. by rewrite /gdcop; apply: gdcop_recP. Qed.
Lemma coprimep_gdco p q : (q != 0)%B -> coprimep (gdcop p q) p.
Proof. by move=> q_neq0; case: gdcopP => d; rewrite (negPf q_neq0) orbF. Qed.
Lemma size2_dvdp_gdco p q d : p != 0 -> size d = 2%N ->
(d %| (gdcop q p)) = (d %| p) && ~~ (d %| q).
Proof.
case: (eqVneq d 0) => [-> | dn0]; first by rewrite size_poly0.
move=> p0 sd; apply/idP/idP.
case: gdcopP => r rp crq maxr dr; move/negPf:(p0) => p0f.
rewrite (dvdp_trans dr) //=.
move: crq; apply: contraL => dq; rewrite p0f orbF; apply/coprimepPn.
by move: p0; apply: contra => r0; move: rp; rewrite (eqP r0) dvd0p.
by exists d; rewrite dvdp_gcd dr dq -size_poly_eq1 sd.
case/andP=> dp dq; case: gdcopP => r rp crq maxr; apply: maxr => //.
apply/coprimepP=> x xd xq.
move: (dvdp_leq dn0 xd); rewrite leq_eqVlt sd; case/orP; last first.
rewrite ltnS leq_eqVlt; case/orP; first by rewrite -size_poly_eq1.
rewrite ltnS leqn0 size_poly_eq0; move/eqP=> x0; move: xd; rewrite x0 dvd0p.
by rewrite (negPf dn0).
by rewrite -sd dvdp_size_eqp //; move/(eqp_dvdl q); rewrite xq (negPf dq). Qed.
Lemma dvdp_gdco p q : (gdcop p q) %| q.
Proof. by case: gdcopP. Qed.
Lemma root_gdco p q x :
p != 0 -> root (gdcop q p) x = root p x && ~~ (root q x).
Proof.
move=> p0 /=; rewrite !root_factor_theorem.
apply: size2_dvdp_gdco; rewrite ?p0 //.
by rewrite size_addl size_polyX // size_opp size_polyC ltnS; case: (x != 0). Qed.
Lemma dvdp_comp_poly r p q : (p %| q) -> (p \Po r) %| (q \Po r).
Proof.
case: (eqVneq p 0) => [-> | pn0].
by rewrite comp_poly0 !dvd0p; move/eqP->; rewrite comp_poly0.
rewrite dvdp_eq; set c := _ ^+ _; set s := _ %/ _; move/eqP=> Hq.
apply: (@eq_dvdp c (s \Po r)); first by rewrite expf_neq0 // lead_coef_eq0.
by rewrite -comp_polyZ Hq comp_polyM. Qed.
Lemma gcdp_comp_poly r p q :
gcdp p q \Po r %= gcdp (p \Po r) (q \Po r).
Proof.
apply/andP; split.
by rewrite dvdp_gcd !dvdp_comp_poly ?dvdp_gcdl ?dvdp_gcdr.
case: (Bezoutp p q) => [[u v]] /andP[].
move/(dvdp_comp_poly r) => Huv _.
rewrite (dvdp_trans _ Huv) // comp_polyD !comp_polyM.
by rewrite dvdp_add // dvdp_mull // (dvdp_gcdl, dvdp_gcdr). Qed.
Lemma coprimep_comp_poly r p q : coprimep p q -> coprimep (p \Po r) (q \Po r).
Proof.
rewrite -!gcdp_eqp1 -!size_poly_eq1 -!dvdp1; move/(dvdp_comp_poly r).
rewrite comp_polyC => Hgcd.
by apply: dvdp_trans Hgcd; case/andP: (gcdp_comp_poly r p q). Qed.
Lemma coprimep_addl_mul p q r : coprimep r (p * r + q) = coprimep r q.
Proof.
by rewrite !coprimep_def (eqp_size (gcdp_addl_mul _ _ _)). Qed.
Definition irreducible_poly p :=
(size p > 1) * (forall q, size q != 1%N -> q %| p -> q %= p) : Prop.
Lemma irredp_neq0 p : irreducible_poly p -> p != 0.
Proof. by rewrite -size_poly_eq0 -lt0n => [[/ltnW]]. Qed.
Definition apply_irredp p (irr_p : irreducible_poly p) := irr_p.2.
Coercion apply_irredp : irreducible_poly >-> Funclass.
Lemma modp_XsubC p c : p %% ('X - c%:P) = p.[c]%:P.
Proof.
have: root (p - p.[c]%:P) c by rewrite /root !hornerE subrr.
case/factor_theorem=> q /(canRL (subrK _))Dp; rewrite modpE /= lead_coefXsubC.
rewrite GRing.unitr1 expr1n invr1 scale1r {1}Dp.
rewrite RingMonic.rmodp_addl_mul_small // ?monicXsubC // size_XsubC size_polyC. by case: (p.[c] == 0). Qed.
Lemma coprimep_XsubC p c : coprimep p ('X - c%:P) = ~~ root p c.
Proof.
rewrite -coprimep_modl modp_XsubC /root -alg_polyC.
have [-> | /coprimep_scalel->] := altP eqP; last exact: coprime1p.
by rewrite scale0r /coprimep gcd0p size_XsubC. Qed.
Lemma coprimepX p : coprimep p 'X = ~~ root p 0.
Proof. by rewrite -['X]subr0 coprimep_XsubC. Qed.
Lemma eqp_monic : {in monic &, forall p q, (p %= q) = (p == q)}.
Proof.
move=> p q monic_p monic_q; apply/idP/eqP=> [|-> //].
case/eqpP=> [[a b] /= /andP[a_neq0 _] eq_pq].
apply: (@mulfI _ a%:P); first by rewrite polyC_eq0.
rewrite !mul_polyC eq_pq; congr (_ *: q); apply: (mulIf (oner_neq0 _)).
by rewrite -{1}(monicP monic_q) -(monicP monic_p) -!lead_coefZ eq_pq. Qed.
Lemma dvdp_mul_XsubC p q c :
(p %| ('X - c%:P) * q) = ((if root p c then p %/ ('X - c%:P) else p) %| q).
Proof.
case: ifPn => [|not_pc0]; last by rewrite Gauss_dvdpr ?coprimep_XsubC.
rewrite root_factor_theorem -eqp_div_XsubC mulrC => /eqP {1}->.
by rewrite dvdp_mul2l ?polyXsubC_eq0. Qed.
Lemma dvdp_prod_XsubC (I : Type) (r : seq I) (F : I -> R) p :
p %| \prod_(i <- r) ('X - (F i)%:P) ->
{m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}.
Proof.
elim: r => [|i r IHr] in p *.
by rewrite big_nil dvdp1; exists nil; rewrite // big_nil -size_poly_eq1.
rewrite big_cons dvdp_mul_XsubC root_factor_theorem -eqp_div_XsubC.
case: eqP => [{2}-> | _] /IHr[m Dp]; last by exists (false :: m).
by exists (true :: m); rewrite /= mulrC big_cons eqp_mul2l ?polyXsubC_eq0. Qed.
Lemma irredp_XsubC (x : R) : irreducible_poly ('X - x%:P).
Proof.
split=> [|d size_d d_dv_Xx]; first by rewrite size_XsubC.
have: ~ d %= 1 by apply/negP; rewrite -size_poly_eq1.
have [|m /=] := @dvdp_prod_XsubC _ [:: x] id d; first by rewrite big_seq1.
by case: m => [|[] [|_ _] /=]; rewrite (big_nil, big_seq1). Qed.
Lemma irredp_XsubCP d p : irreducible_poly p -> d %| p -> {d %= 1} + {d %= p}.
Proof.
move=> irred_p dvd_dp; have [] := boolP (_ %= 1); first by left.
by rewrite -size_poly_eq1 => /irred_p/(_ dvd_dp); right. Qed.
End IDomainPseudoDivision.
Hint Resolve eqpxx divp0 divp1 mod0p modp0 modp1 dvdp_mull dvdp_mulr dvdpp : core.
Hint Resolve dvdp0 : core.
End CommonIdomain.
Module Idomain.
Include IdomainDefs.
Export IdomainDefs.
Include WeakIdomain.
Include CommonIdomain.
End Idomain.
Module IdomainMonic.
Import Ring ComRing UnitRing IdomainDefs Idomain.
Section MonicDivisor.
Variable R : idomainType.
Variable q : {poly R}.
Hypothesis monq : q \is monic.
Implicit Type p d r : {poly R}.
Lemma divpE p : p %/ q = rdivp p q.
Proof.
by rewrite divpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.
Lemma modpE p : p %% q = rmodp p q.
Proof.
by rewrite modpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.
Lemma scalpE p : scalp p q = 0%N.
Proof.
by rewrite scalpE (eqP monq) unitr1. Qed.
Lemma divp_eq p : p = (p %/ q) * q + (p %% q).
Proof.
by rewrite -divp_eq (eqP monq) expr1n scale1r. Qed.
Lemma divpp p : q %/ q = 1.
Proof.
by rewrite divpp ?monic_neq0 // (eqP monq) expr1n. Qed.
Lemma dvdp_eq p : (q %| p) = (p == (p %/ q) * q).
Proof.
by rewrite dvdp_eq (eqP monq) expr1n scale1r. Qed.
Lemma dvdpP p :
reflect (exists qq, p = qq * q) (q %| p).
Proof.
apply: (iffP idP); first by rewrite dvdp_eq; move/eqP=> e; exists (p %/ q).
by case=> qq ->; rewrite dvdp_mull // dvdpp. Qed.
Lemma mulpK p : p * q %/ q = p.
Proof.
by rewrite mulpK ?monic_neq0 // (eqP monq) expr1n scale1r. Qed.
Lemma mulKp p : q * p %/ q = p.
Proof. by rewrite mulrC; apply: mulpK. Qed.
End MonicDivisor.
End IdomainMonic.
Module IdomainUnit.
Import Ring ComRing UnitRing IdomainDefs Idomain.
Section UnitDivisor.
Variable R : idomainType.
Variable d : {poly R}.
Hypothesis ulcd : lead_coef d \in GRing.unit.
Implicit Type p q r : {poly R}.
Lemma divp_eq p : p = (p %/ d) * d + (p %% d).
Proof.
by have:= (divp_eq p d); rewrite scalpE ulcd expr0 scale1r. Qed.
Lemma edivpP p q r :
p = q * d + r -> size r < size d -> q = (p %/ d) /\ r = p %% d.
Proof.
move=> ep srd; have:= (divp_eq p); rewrite {1}ep.
move/eqP; rewrite -subr_eq -addrA addrC eq_sym -subr_eq -mulrBl; move/eqP.
have lcdn0: lead_coef d != 0 by apply: contraTneq ulcd => ->; rewrite unitr0.
case abs: (p %/ d - q == 0).
move: abs; rewrite subr_eq0; move/eqP->; rewrite subrr mul0r; move/eqP.
by rewrite eq_sym subr_eq0; move/eqP->.
have hleq: size d <= size ((p %/ d - q) * d).
rewrite size_proper_mul; last first.
by rewrite mulf_eq0 (negPf lcdn0) orbF lead_coef_eq0 abs.
move: abs; rewrite -size_poly_eq0; move/negbT; rewrite -lt0n; move/prednK <-.
by rewrite addSn /= leq_addl.
have hlt: size (r - p %% d) < size d.
apply: leq_ltn_trans (size_add _ _) _; rewrite size_opp.
by rewrite gtn_max srd ltn_modp /= -lead_coef_eq0. by move=> e; have:= (leq_trans hlt hleq); rewrite e ltnn. Qed.
Lemma divpP p q r :
p = q * d + r -> size r < size d -> q = (p %/ d).
Proof. by move/edivpP=> h; case/h. Qed.
Lemma modpP p q r : p = q * d + r -> size r < size d -> r = (p %% d).
Proof. by move/edivpP=> h; case/h. Qed.
Lemma ulc_eqpP p q :
lead_coef q \is a GRing.unit ->
reflect (exists2 c : R, c != 0 & p = c *: q)
(p %= q).
Proof.
case: (altP (lead_coef q =P 0)) => [-> |]; first by rewrite unitr0.
rewrite lead_coef_eq0 => nz_q ulcq; apply: (iffP idP).
case: (altP (p =P 0)) => [->|nz_p].
by rewrite eqp_sym eqp0 (negbTE nz_q).
move/eqp_eq=> eq; exists (lead_coef p / lead_coef q).
by rewrite mulf_neq0 // ?invr_eq0 lead_coef_eq0.
by apply/(scaler_injl ulcq); rewrite scalerA mulrCA divrr // mulr1.
by case=> c nz_c ->; apply/eqpP; exists (1, c); rewrite ?scale1r ?oner_eq0. Qed.
Lemma dvdp_eq p : (d %| p) = (p == p %/ d * d).
Proof.
apply/eqP/eqP=> [modp0 | ->]; last exact: modp_mull.
by rewrite {1}(divp_eq p) modp0 addr0. Qed.
Lemma ucl_eqp_eq p q : lead_coef q \is a GRing.unit -> p %= q -> p = (lead_coef p / lead_coef q) *: q.
Proof.
move=> ulcq /eqp_eq; move/(congr1 (*:%R (lead_coef q)^-1)).
by rewrite !scalerA mulrC divrr // scale1r mulrC. Qed.
Lemma modp_scalel c p : (c *: p) %% d = c *: (p %% d).
Proof.
case: (altP (c =P 0)) => [-> | cn0]; first by rewrite !scale0r mod0p.
have e: (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d).
by rewrite -scalerAl -scalerDr -divp_eq.
have s: size (c *: (p %% d)) < size d.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
rewrite size_polyC cn0 addSn add0n /= ltn_modp.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0. by case: (edivpP e s) => _ ->. Qed.
Lemma divp_scalel c p : (c *: p) %/ d = c *: (p %/ d).
Proof.
case: (altP (c =P 0)) => [-> | cn0]; first by rewrite !scale0r div0p.
have e: (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d).
by rewrite -scalerAl -scalerDr -divp_eq.
have s: size (c *: (p %% d)) < size d.
rewrite -mul_polyC; apply: leq_ltn_trans (size_mul_leq _ _) _.
rewrite size_polyC cn0 addSn add0n /= ltn_modp.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0. by case: (edivpP e s) => ->. Qed.
Lemma eqp_modpl p q : p %= q -> (p %% d) %= (q %% d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 //= -!modp_scalel e. Qed.
Lemma eqp_divl p q : p %= q -> (p %/ d) %= (q %/ d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divp_scalel e. Qed.
Lemma modp_opp p : (- p) %% d = - (p %% d).
Proof.
by rewrite -mulN1r -[-(_ %% _)]mulN1r -polyC_opp !mul_polyC modp_scalel. Qed.
Lemma divp_opp p : (- p) %/ d = - (p %/ d).
Proof.
by rewrite -mulN1r -[-(_ %/ _)]mulN1r -polyC_opp !mul_polyC divp_scalel. Qed.
Lemma modp_add p q : (p + q) %% d = p %% d + q %% d.
Proof.
have hs: size (p %% d + q %% d) < size d.
apply: leq_ltn_trans (size_add _ _) _.
rewrite gtn_max !ltn_modp andbb -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
have he: (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d).
rewrite {1}(divp_eq p) {1}(divp_eq q) addrAC addrA -mulrDl. by rewrite [_ %% _ + _]addrC addrA. by case: (edivpP he hs). Qed.
Lemma divp_add p q : (p + q) %/ d = p %/ d + q %/ d.
Proof.
have hs: size (p %% d + q %% d) < size d.
apply: leq_ltn_trans (size_add _ _) _.
rewrite gtn_max !ltn_modp andbb -lead_coef_eq0.
by apply: contraTneq ulcd => ->; rewrite unitr0.
have he: (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d).
rewrite {1}(divp_eq p) {1}(divp_eq q) addrAC addrA -mulrDl. by rewrite [_ %% _ + _]addrC addrA. by case: (edivpP he hs). Qed.
Lemma mulpK q : (q * d) %/ d = q.
Proof.
case/edivpP: (sym_eq (addr0 (q * d))); rewrite // size_poly0 size_poly_gt0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0. Qed.
Lemma mulKp q : (d * q) %/ d = q.
Proof. by rewrite mulrC; apply: mulpK. Qed.
Lemma divp_addl_mul_small q r : size r < size d -> (q * d + r) %/ d = q.
Proof. by move=> srd; rewrite divp_add (divp_small srd) addr0 mulpK. Qed.
Lemma modp_addl_mul_small q r : size r < size d -> (q * d + r) %% d = r.
Proof. by move=> srd; rewrite modp_add modp_mull add0r modp_small. Qed.
Lemma divp_addl_mul q r : (q * d + r) %/ d = q + r %/ d.
Proof. by rewrite divp_add mulpK. Qed.
Lemma divpp : d %/ d = 1.
Proof. by rewrite -{1}(mul1r d) mulpK. Qed.
Lemma leq_trunc_divp m : size (m %/ d * d) <= size m.
Proof.
have dn0: d != 0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0.
case q0: (m %/ d == 0); first by rewrite (eqP q0) mul0r size_poly0 leq0n.
rewrite {2}(divp_eq m) size_addl // size_mul ?q0 //; move/negbT: q0.
rewrite -size_poly_gt0; move/prednK <-; rewrite addSn /=.
by move: dn0; rewrite -(ltn_modp m); move/ltn_addl->. Qed.
Lemma dvdpP p : reflect (exists q, p = q * d) (d %| p).
Proof.
apply: (iffP idP) => [|[k ->]]; last by apply/eqP; rewrite modp_mull.
by rewrite dvdp_eq; move/eqP->; exists (p %/ d). Qed.
Lemma divpK p : d %| p -> p %/ d * d = p.
Proof. by rewrite dvdp_eq; move/eqP. Qed.
Lemma divpKC p : d %| p -> d * (p %/ d) = p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma dvdp_eq_div p q : d %| p -> (q == p %/ d) = (q * d == p).
Proof.
move/divpK=> {2}<-; apply/eqP/eqP; first by move->.
suff dn0: d != 0 by move/(mulIf dn0).
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0. Qed.
Lemma dvdp_eq_mul p q : d %| p -> (p == q * d) = (p %/ d == q).
Proof. by move=> dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.
Lemma divp_mulA p q : d %| q -> p * (q %/ d) = p * q %/ d.
Proof.
move=> hdm; apply/eqP; rewrite eq_sym -dvdp_eq_mul. by rewrite -mulrA divpK.
by move/divpK: hdm <-; rewrite mulrA dvdp_mull // dvdpp. Qed.
Lemma divp_mulAC m n : d %| m -> m %/ d * n = m * n %/ d.
Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.
Lemma divp_mulCA p q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d).
Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.
Lemma modp_mul p q : (p * (q %% d)) %% d = (p * q) %% d.
Proof.
have ->: q %% d = q - q %/ d * d by rewrite {2}(divp_eq q) -addrA addrC subrK.
rewrite mulrDr modp_add // -mulNr mulrA -{2}[_ %% _]addr0; congr (_ + _).
by apply/eqP; apply: dvdp_mull; apply: dvdpp. Qed.
End UnitDivisor.
Section MoreUnitDivisor.
Variable R : idomainType.
Variable d : {poly R}.
Hypothesis ulcd : lead_coef d \in GRing.unit.
Implicit Types p q : {poly R}.
Lemma expp_sub m n : n <= m -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
Proof.
by move/subnK=> {2}<-; rewrite exprD mulpK // lead_coef_exp unitrX. Qed.
Lemma divp_pmul2l p q : lead_coef q \in GRing.unit -> d * p %/ (d * q) = p %/ q.
Proof.
move=> uq.
have udq: lead_coef (d * q) \in GRing.unit.
by rewrite lead_coefM unitrM_comm ?ulcd //; red; rewrite mulrC.
rewrite {1}(divp_eq uq p) mulrDr mulrCA divp_addl_mul //.
have dn0: d != 0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0.
have qn0: q != 0.
by rewrite -lead_coef_eq0; apply: contraTneq uq => ->; rewrite unitr0.
have dqn0: d * q != 0 by rewrite mulf_eq0 negb_or dn0.
suff: size (d * (p %% q)) < size (d * q).
by rewrite ltnNge -divpN0 // negbK => /eqP->; rewrite addr0.
case: (altP ((p %% q) =P 0)) => [-> | rn0].
by rewrite mulr0 size_poly0 size_poly_gt0.
rewrite !size_mul //; move: dn0; rewrite -size_poly_gt0. by move/prednK <-; rewrite !addSn /= ltn_add2l ltn_modp. Qed.
Lemma divp_pmul2r p q : lead_coef p \in GRing.unit -> q * d %/ (p * d) = q %/ p.
Proof. by move=> uq; rewrite -!(mulrC d) divp_pmul2l. Qed.
Lemma divp_divl r p q :
lead_coef r \in GRing.unit -> lead_coef p \in GRing.unit -> q %/ p %/ r = q %/ (p * r).
Proof.
move=> ulcr ulcp.
have e: q = (q %/ p %/ r) * (p * r) + ((q %/ p) %% r * p + q %% p).
by rewrite addrA (mulrC p) mulrA -mulrDl; rewrite -divp_eq //; apply: divp_eq.
have pn0: p != 0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcp => ->; rewrite unitr0.
have rn0: r != 0.
by rewrite -lead_coef_eq0; apply: contraTneq ulcr => ->; rewrite unitr0.
have s: size ((q %/ p) %% r * p + q %% p) < size (p * r).
case: (altP ((q %/ p) %% r =P 0)) => [-> | qn0].
rewrite mul0r add0r size_mul // (polySpred rn0) addnS /=.
by apply: leq_trans (leq_addr _ _); rewrite ltn_modp.
rewrite size_addl mulrC.
by rewrite !size_mul // (polySpred pn0) !addSn /= ltn_add2l ltn_modp.
rewrite size_mul // (polySpred qn0) addnS /=.
by apply: leq_trans (leq_addr _ _); rewrite ltn_modp.
case: (edivpP _ e s) => //; rewrite lead_coefM unitrM_comm ?ulcp //. by red; rewrite mulrC. Qed.
Lemma divpAC p q :
lead_coef p \in GRing.unit -> q %/ d %/ p = q %/ p %/ d.
Proof. by move=> ulcp; rewrite !divp_divl // mulrC. Qed.
Lemma modp_scaler c p : c \in GRing.unit -> p %% (c *: d) = (p %% d).
Proof.
move=> cn0; case: (eqVneq d 0) => [-> | dn0]; first by rewrite scaler0 !modp0.
have e: p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd).
suff s: size (p %% d) < size (c *: d).
by rewrite (modpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0.
by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0. Qed.
Lemma divp_scaler c p :
c \in GRing.unit -> p %/ (c *: d) = c^-1 *: (p %/ d).
Proof.
move=> cn0; case: (eqVneq d 0) => [-> | dn0].
by rewrite scaler0 !divp0 scaler0.
have e: p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd).
suff s: size (p %% d) < size (c *: d).
by rewrite (divpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0.
by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0. Qed.
End MoreUnitDivisor.
End IdomainUnit.
Module Field.
Import Ring ComRing UnitRing.
Include IdomainDefs.
Export IdomainDefs.
Include CommonIdomain.
Section FieldDivision.
Variable F : fieldType.
Implicit Type p q r d : {poly F}.
Lemma divp_eq p q : p = (p %/ q) * q + (p %% q).
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite modp0 mulr0 add0r.
by apply: IdomainUnit.divp_eq; rewrite unitfE lead_coef_eq0. Qed.
Lemma divp_modpP p q d r :
p = q * d + r -> size r < size d -> q = (p %/ d) /\ r = p %% d.
Proof.
move=> he hs; apply: IdomainUnit.edivpP => //; rewrite unitfE lead_coef_eq0. by rewrite -size_poly_gt0; apply: leq_trans hs. Qed.
Lemma divpP p q d r :
p = q * d + r -> size r < size d -> q = (p %/ d).
Proof. by move/divp_modpP=> h; case/h. Qed.
Lemma modpP p q d r : p = q * d + r -> size r < size d -> r = (p %% d).
Proof. by move/divp_modpP=> h; case/h. Qed.
Lemma eqpfP p q : p %= q -> p = (lead_coef p / lead_coef q) *: q.
Proof.
have [->|nz_q] := altP (q =P 0).
by rewrite eqp0 => /eqP->; rewrite scaler0.
move/IdomainUnit.ucl_eqp_eq; apply; rewrite unitfE. by move: nz_q; rewrite -lead_coef_eq0 => nz_qT. Qed.
Lemma dvdp_eq q p : (q %| p) = (p == p %/ q * q).
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite dvd0p mulr0 eq_sym.
by apply: IdomainUnit.dvdp_eq; rewrite unitfE lead_coef_eq0. Qed.
Lemma eqpf_eq p q :
reflect (exists2 c, c != 0 & p = c *: q) (p %= q).
Proof.
apply: (iffP idP); last first.
case=> c nz_c ->; apply/eqpP.
by exists (1, c); rewrite ?scale1r ?oner_eq0.
have [->|nz_q] := altP (q =P 0).
by rewrite eqp0 => /eqP->; exists 1; rewrite ?scale1r ?oner_eq0.
case/IdomainUnit.ulc_eqpP; first by rewrite unitfE lead_coef_eq0. by move=> c nz_c ->; exists c. Qed.
Lemma modp_scalel c p q : (c *: p) %% q = c *: (p %% q).
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite !modp0.
by apply: IdomainUnit.modp_scalel; rewrite unitfE lead_coef_eq0. Qed.
Lemma mulpK p q : q != 0 -> p * q %/ q = p.
Proof. by move=> qn0; rewrite IdomainUnit.mulpK // unitfE lead_coef_eq0. Qed.
Lemma mulKp p q : q != 0 -> q * p %/ q = p.
Proof. by rewrite mulrC; apply: mulpK. Qed.
Lemma divp_scalel c p q : (c *: p) %/ q = c *: (p %/ q).
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite !divp0 scaler0.
by apply: IdomainUnit.divp_scalel; rewrite unitfE lead_coef_eq0. Qed.
Lemma modp_scaler c p d : c != 0 -> p %% (c *: d) = (p %% d).
Proof.
move=> cn0; case: (eqVneq d 0) => [-> | dn0]; first by rewrite scaler0 !modp0.
have e: p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVf // scale1r -divp_eq.
suff s: size (p %% d) < size (c *: d) by rewrite (modpP e s).
by rewrite size_scale ?ltn_modp. Qed.
Lemma divp_scaler c p d : c != 0 -> p %/ (c *: d) = c^-1 *: (p %/ d).
Proof.
move=> cn0; case: (eqVneq d 0) => [-> | dn0].
by rewrite scaler0 !divp0 scaler0.
have e: p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d).
by rewrite scalerCA scalerA mulVf // scale1r -divp_eq.
suff s: size (p %% d) < size (c *: d) by rewrite (divpP e s).
by rewrite size_scale ?ltn_modp. Qed.
Lemma eqp_modpl d p q : p %= q -> (p %% d) %= (q %% d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!modp_scalel e. Qed.
Lemma eqp_divl d p q : p %= q -> (p %/ d) %= (q %/ d).
Proof.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e].
by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divp_scalel e. Qed.
Lemma eqp_modpr d p q : p %= q -> (d %% p) %= (d %% q).
Proof.
case/eqpP=> [[c1 c2]] /andP[c1n0 c2n0 e].
have ->: p = (c1^-1 * c2) *: q by rewrite -scalerA -e scalerA mulVf // scale1r.
by rewrite modp_scaler ?eqpxx // mulf_eq0 negb_or invr_eq0 c1n0. Qed.
Lemma eqp_mod p1 p2 q1 q2 :
p1 %= p2 -> q1 %= q2 -> p1 %% q1 %= p2 %% q2.
Proof.
move=> e1 e2; apply: eqp_trans (eqp_modpr _ e2).
by apply: eqp_trans (eqp_modpl _ e1); apply: eqpxx. Qed.
Lemma eqp_divr (d m n : {poly F}) : m %= n -> (d %/ m) %= (d %/ n).
Proof.
case/eqpP=> [[c1 c2]] /andP[c1n0 c2n0 e].
have ->: m = (c1^-1 * c2) *: n by rewrite -scalerA -e scalerA mulVf // scale1r.
by rewrite divp_scaler ?eqp_scale // ?invr_eq0 mulf_eq0 negb_or invr_eq0 c1n0. Qed.
Lemma eqp_div p1 p2 q1 q2 :
p1 %= p2 -> q1 %= q2 -> p1 %/ q1 %= p2 %/ q2.
Proof.
move=> e1 e2; apply: eqp_trans (eqp_divr _ e2).
by apply: eqp_trans (eqp_divl _ e1); apply: eqpxx. Qed.
Lemma eqp_gdcor p q r : q %= r -> gdcop p q %= gdcop p r.
Proof.
move=> eqr; rewrite /gdcop (eqp_size eqr).
move: (size r) => n; elim: n p q r eqr => [|n ihn] p q r; first by rewrite eqpxx.
move=> eqr /=; rewrite (eqp_coprimepl p eqr); case: ifP => _ //; apply: ihn.
by apply: eqp_div => //; apply: eqp_gcdl. Qed.
Lemma eqp_gdcol p q r : q %= r -> gdcop q p %= gdcop r p.
Proof.
move=> eqr; rewrite /gdcop; move: (size p) => n.
elim: n p q r eqr {1 3}p (eqpxx p) => [|n ihn] p q r eqr s esp /=.
move: eqr; case: (eqVneq q 0) => [-> | nq0 eqr] /=.
by rewrite eqp_sym eqp0; move->; rewrite eqxx eqpxx.
suff rn0: r != 0 by rewrite (negPf nq0) (negPf rn0) eqpxx.
by apply: contraTneq eqr => ->; rewrite eqp0.
rewrite (eqp_coprimepr _ eqr) (eqp_coprimepl _ esp); case: ifP => _ //.
by apply: ihn => //; apply: eqp_div => //; apply: eqp_gcd. Qed.
Lemma eqp_rgdco_gdco q p : rgdcop q p %= gdcop q p.
Proof.
rewrite /rgdcop /gdcop; move: (size p) => n.
elim: n p q {1 3}p {1 3}q (eqpxx p) (eqpxx q) => [|n ihn] p q s t /= sp tq.
move: tq; case: (eqVneq t 0) => [-> | nt0 etq].
by rewrite eqp_sym eqp0; move->; rewrite eqxx eqpxx.
suff qn0: q != 0 by rewrite (negPf nt0) (negPf qn0) eqpxx.
by apply: contraTneq etq => ->; rewrite eqp0.
rewrite rcoprimep_coprimep (eqp_coprimepl t sp) (eqp_coprimepr p tq).
case: ifP => // _; apply: ihn => //; apply: eqp_trans (eqp_rdiv_div _ _) _.
by apply: eqp_div => //; apply: eqp_trans (eqp_rgcd_gcd _ _) _; apply: eqp_gcd. Qed.
Lemma modp_opp p q : (- p) %% q = - (p %% q).
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite !modp0.
by apply: IdomainUnit.modp_opp; rewrite unitfE lead_coef_eq0. Qed.
Lemma divp_opp p q : (- p) %/ q = - (p %/ q).
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite !divp0 oppr0.
by apply: IdomainUnit.divp_opp; rewrite unitfE lead_coef_eq0. Qed.
Lemma modp_add d p q : (p + q) %% d = p %% d + q %% d.
Proof.
case: (eqVneq d 0) => [-> | dn0]; first by rewrite !modp0.
by apply: IdomainUnit.modp_add; rewrite unitfE lead_coef_eq0. Qed.
Lemma modNp p q : (- p) %% q = - (p %% q).
Proof.
by apply/eqP; rewrite -addr_eq0 -modp_add addNr mod0p. Qed.
Lemma divp_add d p q : (p + q) %/ d = p %/ d + q %/ d.
Proof.
case: (eqVneq d 0) => [-> | dn0]; first by rewrite !divp0 addr0.
by apply: IdomainUnit.divp_add; rewrite unitfE lead_coef_eq0. Qed.
Lemma divp_addl_mul_small d q r : size r < size d -> (q * d + r) %/ d = q.
Proof.
move=> srd; rewrite divp_add (divp_small srd) addr0 mulpK //. by rewrite -size_poly_gt0; apply: leq_trans srd. Qed.
Lemma modp_addl_mul_small d q r : size r < size d -> (q * d + r) %% d = r.
Proof. by move=> srd; rewrite modp_add modp_mull add0r modp_small. Qed.
Lemma divp_addl_mul d q r : d != 0 -> (q * d + r) %/ d = q + r %/ d.
Proof. by move=> dn0; rewrite divp_add mulpK. Qed.
Lemma divpp d : d != 0 -> d %/ d = 1.
Proof. by move=> dn0; apply: IdomainUnit.divpp; rewrite unitfE lead_coef_eq0. Qed.
Lemma leq_trunc_divp d m : size (m %/ d * d) <= size m.
Proof.
case: (eqVneq d 0) => [-> | dn0]; first by rewrite mulr0 size_poly0.
by apply: IdomainUnit.leq_trunc_divp; rewrite unitfE lead_coef_eq0. Qed.
Lemma divpK d p : d %| p -> p %/ d * d = p.
Proof.
case: (eqVneq d 0) => [-> | dn0]; first by move/dvd0pP->; rewrite mulr0.
by apply: IdomainUnit.divpK; rewrite unitfE lead_coef_eq0. Qed.
Lemma divpKC d p : d %| p -> d * (p %/ d) = p.
Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma dvdp_eq_div d p q : d != 0 -> d %| p -> (q == p %/ d) = (q * d == p).
Proof. by move=> dn0; apply: IdomainUnit.dvdp_eq_div; rewrite unitfE lead_coef_eq0. Qed.
Lemma dvdp_eq_mul d p q : d != 0 -> d %| p -> (p == q * d) = (p %/ d == q).
Proof. by move=> dn0 dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.
Lemma divp_mulA d p q : d %| q -> p * (q %/ d) = p * q %/ d.
Proof.
case: (eqVneq d 0) => [-> | dn0]; first by move/dvd0pP->; rewrite !divp0 mulr0.
by apply: IdomainUnit.divp_mulA; rewrite unitfE lead_coef_eq0. Qed.
Lemma divp_mulAC d m n : d %| m -> m %/ d * n = m * n %/ d.
Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.
Lemma divp_mulCA d p q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d).
Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.
Lemma expp_sub d m n : d != 0 -> m >= n -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n.
Proof. by move=> dn0 /subnK=> {2}<-; rewrite exprD mulpK // expf_neq0. Qed.
Lemma divp_pmul2l d q p : d != 0 -> q != 0 -> d * p %/ (d * q) = p %/ q.
Proof. by move=> dn0 qn0; apply: IdomainUnit.divp_pmul2l; rewrite unitfE lead_coef_eq0. Qed.
Lemma divp_pmul2r d p q : d != 0 -> p != 0 -> q * d %/ (p * d) = q %/ p.
Proof. by move=> dn0 qn0; rewrite -!(mulrC d) divp_pmul2l. Qed.
Lemma divp_divl r p q : q %/ p %/ r = q %/ (p * r).
Proof.
case: (eqVneq r 0) => [-> | rn0]; first by rewrite mulr0 !divp0.
case: (eqVneq p 0) => [-> | pn0]; first by rewrite mul0r !divp0 div0p.
by apply: IdomainUnit.divp_divl; rewrite unitfE lead_coef_eq0. Qed.
Lemma divpAC d p q : q %/ d %/ p = q %/ p %/ d.
Proof. by rewrite !divp_divl // mulrC. Qed.
Lemma edivp_def p q : edivp p q = (0%N, p %/ q, p %% q).
Proof.
rewrite Idomain.edivp_def; congr (_, _, _); rewrite /scalp 2!unlock /=.
case (eqVneq q 0) => [-> | qn0]; first by rewrite eqxx lead_coef0 unitr0.
rewrite (negPf qn0) /= unitfE lead_coef_eq0 qn0 /=.
by case: (redivp_rec _ _ _ _) => [[]]. Qed.
Lemma divpE p q :
p %/ q = (lead_coef q) ^- (rscalp p q) *: (rdivp p q).
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite rdivp0 divp0 scaler0. by rewrite Idomain.divpE unitfE lead_coef_eq0 qn0. Qed.
Lemma modpE p q :
p %% q = (lead_coef q) ^- (rscalp p q) *: (rmodp p q).
Proof.
case: (eqVneq q 0) => [-> | qn0].
by rewrite rmodp0 modp0 /rscalp unlock eqxx lead_coef0 expr0 invr1 scale1r. by rewrite Idomain.modpE unitfE lead_coef_eq0 qn0. Qed.
Lemma scalpE p q : scalp p q = 0%N.
Proof.
case: (eqVneq q 0) => [-> | qn0]; first by rewrite scalp0. by rewrite Idomain.scalpE unitfE lead_coef_eq0 qn0. Qed.
Lemma dvdpE p q : p %| q = rdvdp p q.
Proof. exact: Idomain.dvdpE. Qed.
Variant edivp_spec m d : nat * {poly F} * {poly F} -> Type :=
EdivpSpec n q r of m = q * d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).
Lemma edivpP m d : edivp_spec m d (edivp m d).
Proof.
rewrite edivp_def; constructor; first exact: divp_eq.
by apply/implyP=> dn0; rewrite ltn_modp. Qed.
Lemma edivp_eq d q r :
size r < size d -> edivp (q * d + r) d = (0%N, q, r).
Proof.
move=> srd; apply: Idomain.edivp_eq; rewrite // unitfE lead_coef_eq0. by rewrite -size_poly_gt0; apply: leq_trans srd. Qed.
Lemma modp_mul p q m : (p * (q %% m)) %% m = (p * q) %% m.
Proof.
have ->: q %% m = q - q %/ m * m by rewrite {2}(divp_eq q m) -addrA addrC subrK.
rewrite mulrDr modp_add // -mulNr mulrA -{2}[_ %% _]addr0; congr (_ + _).
by apply/eqP; apply: dvdp_mull; apply: dvdpp. Qed.
Lemma dvdpP p q :
reflect (exists qq, p = qq * q) (q %| p).
Proof.
case: (eqVneq q 0) => [-> | qn0]; last first.
by apply: IdomainUnit.dvdpP; rewrite unitfE lead_coef_eq0.
rewrite dvd0p.
by apply: (iffP idP) => [/eqP-> |[? ->]]; [exists 1|]; rewrite mulr0. Qed.
Lemma Bezout_eq1_coprimepP : forall p q,
reflect (exists u, u.1 * p + u.2 * q = 1)
(coprimep p q).
Proof.
move=> p q; apply: (iffP idP) => [hpq|]; last first.
by case=> [[u v]] /= e; apply/Bezout_coprimepP; exists (u, v); rewrite e eqpxx.
case/Bezout_coprimepP: hpq => [[u v]] /=.
case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0] e.
exists (c2^-1 *: (c1 *: u), c2^-1 *: (c1 *: v)); rewrite /= -!scalerAl.
by rewrite -!scalerDr e scalerA mulVf // scale1r. Qed.
Lemma dvdp_gdcor p q : q != 0 -> p %| (gdcop q p) * (q ^+ size p).
Proof.
move=> q_neq0; rewrite /gdcop.
elim: (size p) {-2 5}p (leqnn (size p)) => {p} [|n ihn] p.
rewrite size_poly_leq0; move/eqP->.
by rewrite size_poly0 /= dvd0p expr0 mulr1 (negPf q_neq0).
move=> hsp /=; have [->|p_neq0] := altP (p =P 0).
rewrite size_poly0 /= dvd0p expr0 mulr1 div0p /=.
case: ifP => // _; have:= (ihn 0).
by rewrite size_poly0 expr0 mulr1 dvd0p => /(_ isT).
have [|ncop_pq] := boolP (coprimep _ _); first by rewrite dvdp_mulr ?dvdpp.
have g_gt1: (1 < size (gcdp p q))%N.
have [|//|/eqP] := ltngtP; last by rewrite -coprimep_def (negPf ncop_pq).
by rewrite ltnS leqn0 size_poly_eq0 gcdp_eq0 (negPf p_neq0).
have sd: (size (p %/ gcdp p q) < size p)%N.
rewrite size_divp -?size_poly_eq0 -(subnKC g_gt1) // add2n /=.
by rewrite -[size _]prednK ?size_poly_gt0 // ltnS subSS leq_subr.
rewrite -{1}[p](divpK (dvdp_gcdl _ q)) -(subnKC sd) addSnnS exprD mulrA.
rewrite dvdp_mul ?ihn //; first by rewrite -ltnS (leq_trans sd).
by rewrite exprS dvdp_mulr // dvdp_gcdr. Qed.
Lemma reducible_cubic_root p q : size p <= 4 -> 1 < size q < size p -> q %| p -> {r | root p r}.
Proof.
move=> p_le4 /andP[]; rewrite leq_eqVlt eq_sym.
have [/poly2_root[x qx0] _ _ | _ /= q_gt2 p_gt_q] := size q =P 2.
by exists x; rewrite -!dvdp_XsubCl in qx0 *; apply: (dvdp_trans qx0).
case/dvdpP/sig_eqW=> r def_p; rewrite def_p.
suffices /poly2_root[x rx0]: size r = 2 by exists x; rewrite rootM rx0.
have /norP[nz_r nz_q]: ~~ [||r == 0 | q == 0].
by rewrite -mulf_eq0 -def_p -size_poly_gt0 (leq_ltn_trans _ p_gt_q).
rewrite def_p size_mul // -subn1 leq_subLR ltn_subRL in p_gt_q p_le4.
by apply/eqP; rewrite -(eqn_add2r (size q)) eqn_leq (leq_trans p_le4). Qed.
Lemma cubic_irreducible p :
1 < size p <= 4 -> (forall x, ~~ root p x) -> irreducible_poly p.
Proof.
move=> /andP[p_gt1 p_le4] root'p; split=> // q sz_q_neq1 q_dv_p.
have nz_p: p != 0 by rewrite -size_poly_gt0 ltnW.
have nz_q: q != 0 by apply: contraTneq q_dv_p => ->; rewrite dvd0p.
have q_gt1: size q > 1 by rewrite ltn_neqAle eq_sym sz_q_neq1 size_poly_gt0.
rewrite -dvdp_size_eqp // eqn_leq dvdp_leq //= leqNgt; apply/negP=> p_gt_q.
by have [|x /idPn //] := reducible_cubic_root p_le4 _ q_dv_p; rewrite q_gt1. Qed.
Section FieldRingMap.
Variable rR : ringType.
Variable f : {rmorphism F -> rR}.
Local Notation "p ^f" := (map_poly f p) : ring_scope.
Implicit Type a b : {poly F}.
Lemma redivp_map a b :
redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f).
Proof.
rewrite /rdivp /rscalp /rmodp !unlock map_poly_eq0 size_map_poly.
case: eqP; rewrite /= -(rmorph0 (map_poly_rmorphism f)) //; move/eqP=> q_nz.
move: (size a) => m; elim: m 0%N 0 a => [|m IHm] qq r a /=.
rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f).
by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD; case: (_ < _).
rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f).
by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD /= IHm; case: (_ < _). Qed.
End FieldRingMap.
Section FieldMap.
Variable rR : idomainType.
Variable f : {rmorphism F -> rR}.
Local Notation "p ^f" := (map_poly f p) : ring_scope.
Implicit Type a b : {poly F}.
Lemma edivp_map a b : edivp a^f b^f = (0%N, (a %/ b)^f, (a %% b)^f).
Proof.
case: (eqVneq b 0) => [-> | bn0].
rewrite (rmorph0 (map_poly_rmorphism f)) WeakIdomain.edivp_def !modp0 !divp0.
by rewrite (rmorph0 (map_poly_rmorphism f)) scalp0.
rewrite unlock redivp_map lead_coef_map rmorph_unit; last first. by rewrite unitfE lead_coef_eq0.
rewrite modpE divpE !map_polyZ !rmorphV ?rmorphX // unitfE.
by rewrite expf_neq0 // lead_coef_eq0. Qed.
Lemma scalp_map p q : scalp p^f q^f = scalp p q.
Proof. by rewrite /scalp edivp_map edivp_def. Qed.
Lemma map_divp p q : (p %/ q)^f = p^f %/ q^f.
Proof. by rewrite /divp edivp_map edivp_def. Qed.
Lemma map_modp p q : (p %% q)^f = p^f %% q^f.
Proof. by rewrite /modp edivp_map edivp_def. Qed.
Lemma egcdp_map p q :
egcdp (map_poly f p) (map_poly f q) = (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2).
Proof.
wlog le_qp: p q / size q <= size p.
move=> IH; have [/IH // | lt_qp] := leqP (size q) (size p).
have /IH := ltnW lt_qp; rewrite /egcdp !size_map_poly ltnW // leqNgt lt_qp /=.
by case: (egcdp_rec _ _ _) => u v [-> ->].
rewrite /egcdp !size_map_poly {}le_qp; move: (size q) => n.
elim: n => /= [|n IHn] in p q *; first by rewrite rmorph1 rmorph0.
rewrite map_poly_eq0; have [_ | nz_q] := ifPn; first by rewrite rmorph1 rmorph0.
rewrite -map_modp (IHn q (p %% q)); case: (egcdp_rec _ _ n) => u v /=.
by rewrite map_polyZ lead_coef_map -rmorphX scalp_map rmorphB rmorphM -map_divp. Qed.
Lemma dvdp_map p q : (p^f %| q^f) = (p %| q).
Proof.
by rewrite /dvdp -map_modp map_poly_eq0. Qed.
Lemma eqp_map p q : (p^f %= q^f) = (p %= q).
Proof. by rewrite /eqp !dvdp_map. Qed.
Lemma gcdp_map p q : (gcdp p q)^f = gcdp p^f q^f.
Proof.
wlog lt_p_q: p q / size p < size q.
move=> IHpq; case: (ltnP (size p) (size q)) => [|le_q_p]; first exact: IHpq.
rewrite gcdpE (gcdpE p^f) !size_map_poly ltnNge le_q_p /= -map_modp.
case: (eqVneq q 0) => [-> | q_nz]; first by rewrite rmorph0 !gcdp0.
by rewrite IHpq ?ltn_modp.
elim: {q}_.+1 p {-2}q (ltnSn (size q)) lt_p_q => // m IHm p q le_q_m lt_p_q.
rewrite gcdpE (gcdpE p^f) !size_map_poly lt_p_q -map_modp.
case: (eqVneq p 0) => [-> | q_nz]; first by rewrite rmorph0 !gcdp0.
by rewrite IHm ?(leq_trans lt_p_q) ?ltn_modp. Qed.
Lemma coprimep_map p q : coprimep p^f q^f = coprimep p q.
Proof. by rewrite -!gcdp_eqp1 -eqp_map rmorph1 gcdp_map. Qed.
Lemma gdcop_rec_map p q n : (gdcop_rec p q n)^f = (gdcop_rec p^f q^f n).
Proof.
elim: n p q => [|n IH] => /= p q.
by rewrite map_poly_eq0; case: eqP; rewrite ?rmorph1 ?rmorph0.
rewrite /coprimep -gcdp_map size_map_poly.
by case: eqP => Hq0 //; rewrite -map_divp -IH. Qed.
Lemma gdcop_map p q : (gdcop p q)^f = (gdcop p^f q^f).
Proof. by rewrite /gdcop gdcop_rec_map !size_map_poly. Qed.
End FieldMap.
End FieldDivision.
End Field.
Module ClosedField.
Import Field.
Section closed.
Variable F : closedFieldType.
Lemma root_coprimep (p q : {poly F}) :
(forall x, root p x -> q.[x] != 0) -> coprimep p q.
Proof.
move=> Ncmn; rewrite -gcdp_eqp1 -size_poly_eq1; apply/closed_rootP. by case=> r; rewrite root_gcd !rootE => /andP[/Ncmn/negbTE->]. Qed.
Lemma coprimepP (p q : {poly F}) :
reflect (forall x, root p x -> q.[x] != 0)
(coprimep p q).
Proof. by apply: (iffP idP) => [/coprimep_root|/root_coprimep]. Qed.
End closed.
End ClosedField.
End Pdiv.
Export Pdiv.Field.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment