Skip to content

Instantly share code, notes, and snippets.

@palmskog
Created September 28, 2020 10:20
Show Gist options
  • Save palmskog/60d6ad8840b907ceb1063204b75a802b to your computer and use it in GitHub Desktop.
Save palmskog/60d6ad8840b907ceb1063204b75a802b to your computer and use it in GitHub Desktop.
Require Import List.
Require Import Sorting.Permutation.
Require Import Arith.
Require Import Wf_nat.
Require Import ssreflect.
Section Alternate.
Variable A : Type.
Record lr := mk_lr {
fls : list A;
sls : list A
}.
Definition lrlt (r r' : lr) : Prop :=
length (fls r ++ sls r) < length (fls r' ++ sls r').
Theorem lrlt_well_founded : well_founded lrlt.
Proof.
apply well_founded_lt_compat with (f := fun r => length (fls r ++ sls r)).
by move => x y; rewrite /lrlt => H.
Defined.
Inductive alternation : list A -> list A -> list A -> Prop :=
| alt_nil : forall l, alternation nil l l
| alt_step : forall a, forall l t t', alternation l t t' -> alternation (a::t) l (a::t').
Definition alternate_t (r : lr) : Type :=
{ l : list A | alternation (fls r) (sls r) l }.
Definition alternate_F : forall r : lr, (forall r' : lr, lrlt r' r -> alternate_t r') -> alternate_t r.
rewrite /alternate_t.
refine
(fun (r : lr) alternate_rec =>
match (fls r) as l return (fls r = l -> alternate_t r) with
| nil => fun (H_eq : fls r = nil) =>
exist _ (sls r) _
| a :: l0 => fun (H_eq : fls r = a :: l0) =>
match alternate_rec (mk_lr (sls r) l0) _ with
| exist _ l' H_ex =>
exist _ (a :: l') _
end
end (refl_equal (fls r))).
- by rewrite H_eq; apply alt_nil.
- rewrite /lrlt H_eq /=.
have H_perm: Permutation (l0 ++ sls r) (sls r ++ l0) by apply: Permutation_app_swap.
have ->: length (l0 ++ sls r) = length (sls r ++ l0) by apply: Permutation_length H_perm.
exact: lt_n_Sn.
- by rewrite H_eq; apply: alt_step H_ex.
Defined.
Definition alternate : forall (r : lr), alternate_t r :=
@well_founded_induction_type
lr
lrlt
lrlt_well_founded
alternate_t
alternate_F.
End Alternate.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment