Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
A simple neural network learning the XOR function with the tensorflow framework
#!/usr/bin/env PYTHONIOENCODING="utf-8" python
"""
A simple neural network learning the XOR function
"""
import tensorflow as tf
sess = tf.InteractiveSession()
# Desired input output mapping of XOR function:
x_ = [[0, 0], [0, 1], [1, 0], [1, 1]] # input
#labels=[0, 1, 1, 0] # output =>
expect=[[1,0], [0,1], [0,1], [1,0]] # ONE HOT REPRESENTATION! 'class' [1,0]==0 [0,1]==1
# x = tf.Variable(x_)
x = tf.placeholder("float", [None,2]) # can we feed directly?
y_ = tf.placeholder("float", [None, 2]) # two output classes
number_hidden_nodes = 20 # 20 outputs to create some room for negatives and positives
W = tf.Variable(tf.random_uniform([2, number_hidden_nodes], -.01, .01))
b = tf.Variable(tf.random_uniform([number_hidden_nodes], -.01, .01))
hidden = tf.nn.relu(tf.matmul(x,W) + b) # first layer.
# the XOR function is the first nontrivial function, for which a two layer network is needed.
W2 = tf.Variable(tf.random_uniform([number_hidden_nodes,2], -.1, .1))
b2 = tf.Variable(tf.zeros([2]))
hidden2 = tf.matmul(hidden, W2)#+b2
y = tf.nn.softmax(hidden2)
# Define loss and optimizer
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(cross_entropy)
# Train
tf.initialize_all_variables().run()
for step in range(1000):
feed_dict={x: x_, y_:expect } # feed the net with our inputs and desired outputs.
e,a=sess.run([cross_entropy,train_step],feed_dict)
if e<1:break # early stopping yay
print "step %d : entropy %s" % (step,e) # error/loss should decrease over time
# Test trained model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) # argmax along dim-1
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # [True, False, True, True] -> [1,0,1,1] -> 0.75.
print "accuracy %s"%(accuracy.eval({x: x_, y_: expect}))
learned_output=tf.argmax(y,1)
print learned_output.eval({x: x_})
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.