View Music_genre_classification.ipynb
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
View Moving Sine Wave.py
import numpy as np | |
from matplotlib import pyplot as plt | |
from matplotlib.animation import FuncAnimation | |
plt.style.use('seaborn-pastel') | |
fig = plt.figure() | |
ax = plt.axes(xlim=(0, 4), ylim=(-2, 2)) | |
line, = ax.plot([], [], lw=3) |
View evaluate.py
%matplotlib inline | |
from sklearn.metrics import roc_curve, precision_recall_curve, auc | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def get_auc(labels, scores): | |
fpr, tpr, thresholds = roc_curve(labels, scores) | |
auc_score = auc(fpr, tpr) |
View coil.py
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
import numpy as np | |
plt.style.use('dark_background') | |
fig = plt.figure() | |
ax = plt.axes(xlim=(-50, 50), ylim=(-50, 50)) | |
line, = ax.plot([], [], lw=2) |
View data.py
df = pd.read_csv("diabetes.csv") | |
df.head() | |
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome | |
0 6 148 72 35 0 33.6 0.627 50 1 | |
1 1 85 66 29 0 26.6 0.351 31 0 | |
2 8 183 64 0 0 23.3 0.672 32 1 | |
3 1 89 66 23 94 28.1 0.167 21 0 | |
4 0 137 40 35 168 43.1 2.288 33 1 |
View live_graph.py
#importing libraries | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
fig = plt.figure() | |
#creating a subplot | |
ax1 = fig.add_subplot(1,1,1) | |
def animate(i): |
View Activating.py
links = result.json()[u"analytic"]["_links"] | |
self_link = links["_self"] | |
activation_link = links["activate"] | |
# Request activation of the 'analytic' asset: | |
activate_result = \ | |
requests.get( | |
activation_link, | |
auth=HTTPBasicAuth(PLANET_API_KEY, '') |
View Query_MODIS_Imagery.py
start = '2018-07-01' | |
end = '2019-08-31' | |
catalog = earth_ondemand.read_catalog( | |
geo="POINT(88.92 21.88)", # Coordinates of Sunderban National Park | |
start_datetime=start, | |
end_datetime=end, | |
collections='mcd43a4', | |
) |
View timeseries.py
time_series = df.groupBy(F.year('datetime').alias('year'), | |
F.weekofyear('datetime').alias('week')) \ | |
.agg(rf_agg_mean('ndvi').alias('mean_ndvi')) | |
ts_pd = time_series.toPandas() | |
#Visualizing using matplotlib | |
ts_pd.sort_values(['year', 'week'], inplace=True) | |
# Create a compact label of year and week number yyyy_ww | |
ts_pd['year_week'] = ts_pd.apply(lambda r:'{0:g}_{1:02g}'.format(r.year, r.week), axis=1) |
View spark_dataframe.py
df.select('red', | |
'nir', | |
'datetime', | |
'id', | |
rf_extent('red').alias('extent'), | |
rf_crs('red').alias('crs')) \ | |
.filter(rf_no_data_cells(rf_with_no_data('red', 0)) < 800) | |
# show tiles that have lots of valid data |
NewerOlder