Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
Implementation of Binary Indexed Tree/Fenwick Tree in Python
#!/usr/bin/env python3
Binary Indexed Tree / Fenwick Tree
def update(index, value, array, bi_tree):
Updates the binary indexed tree with the given value
:param index: index at which the update is to be made
:param value: the new element at the index
:param array: the input array
:param bi_tree: the array representation of the binary indexed tree
:return: void
while index < len(array):
bi_tree[index] += value
index += index & -index
def get_sum(index, bi_tree):
Calculates the sum of the elements from the beginning to the index
:param index: index till which the sum is to be calculated
:param bi_tree: the array representation of the binary indexed tree
:return: (integer) sum of the elements from beginning till index
ans = 0
while index > 0:
ans += bi_tree[index]
index -= index & -index
return ans
def get_range_sum(left, right, bi_tree):
Calculates the sum from the given range
:param bi_tree: the array representation of the binary indexed tree
:param left: left index of the range (1-indexed)
:param right: right index of the range (1-indexed)
:return: (integer) sum of the elements in the range
ans = get_sum(right, bi_tree) - get_sum(left - 1, bi_tree)
return ans
def main():
n = int(input('Enter the number of elements: '))
arr = [int(x) for x in input('Enter the {} elements of the array: '.format(n)).split()]
arr.insert(0, 0) # insert dummy node for 1-based indexing
bit = [0 for i in range(n+1)]
for index in range(1, n+1):
update(index, arr[index], arr, bit)
For range sum queries
l, r = map(int, input('Enter the left and right indices for the range sum: ').split())
print(get_range_sum(l, r, bit))
For updating the binary indexed tree
update(index, new_value - arr[index], arr, bit)
if __name__ == '__main__':
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment