Last active
September 3, 2019 21:19
-
-
Save pathaine/24842f38a0862dc07a43e6c2605d74ca to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/*N is signal size (number of samples), sampleRate in kHz (num samples per ms), frameLength in ms, shiftLength in ms*/ | |
vector<vector<Ciphertext<DCRTPoly>>> real_discrete_fourier_transform(int N, int sampleRate, int frameLength, int shiftLength, CryptoContext<DCRTPoly> cc, LPPublicKey<DCRTPoly> publicKey, CryptoFractions encSignal, LPPrivateKey<DCRTPoly> sk) { | |
int boundN, boundM; | |
if (N % 2 == 0) { | |
boundM = N / 2 - 1; | |
boundN = N / 2; | |
} | |
else { | |
boundM = (N - 1) / 2; | |
boundN = (N - 1) / 2; | |
} | |
vector<int64_t> zeros = { 0 }; | |
vector<int64_t> one = { 1 }; | |
for (int i = 0; i < frameLength - 1; i += 1) { | |
zeros.push_back(0); | |
one.push_back(0); | |
} | |
Plaintext zerosPT1 = cc->MakePackedPlaintext(zeros); | |
Plaintext zerosPT2 = cc->MakePackedPlaintext(zeros); | |
Plaintext onePTRe = cc->MakePackedPlaintext(one); | |
Plaintext onePTIm = cc->MakePackedPlaintext(one); | |
Ciphertext<DCRTPoly> zerosCT1; | |
Ciphertext<DCRTPoly> zerosCT2; | |
Ciphertext<DCRTPoly> oneCTRe; | |
Ciphertext<DCRTPoly> oneCTIm; | |
zerosCT1 = cc->Encrypt(publicKey, zerosPT1); | |
zerosCT2 = cc->Encrypt(publicKey, zerosPT2); | |
oneCTRe = cc->Encrypt(publicKey, onePTRe); | |
oneCTIm = cc->Encrypt(publicKey, onePTIm); | |
int numSamplesInFrame = sampleRate * frameLength; | |
int numSamplesInShift = sampleRate * shiftLength; | |
unsigned long batchSize = upper_power_of_two(numSamplesInFrame); | |
Plaintext cosines; | |
Plaintext sines; | |
Ciphertext<DCRTPoly> innerProductRe; | |
Ciphertext<DCRTPoly> innerProductIm; | |
Ciphertext<DCRTPoly> resultRe; | |
Ciphertext<DCRTPoly> resultReSquared; | |
Ciphertext<DCRTPoly> resultIm; | |
Ciphertext<DCRTPoly> resultImSquared; | |
Ciphertext<DCRTPoly> resultRDFT; | |
vector<vector<Ciphertext<DCRTPoly>>> resultsRe = vector<vector<Ciphertext<DCRTPoly>>>(int(ceil(float(N) / float(numSamplesInShift)))); | |
vector<vector<Ciphertext<DCRTPoly>>> resultsIm = vector<vector<Ciphertext<DCRTPoly>>>(int(ceil(float(N) / float(numSamplesInShift)))); | |
vector<vector<Ciphertext<DCRTPoly>>> RDFT = vector<vector<Ciphertext<DCRTPoly>>>(int(ceil(float(N) / float(numSamplesInShift)))); | |
int atFrame = 0; | |
resultsIm[atFrame].push_back(zerosCT1); | |
for (int i = 0; i <= N; i += numSamplesInShift) { | |
for (int n = 0; n <= boundN; n++) { | |
// CALCULATE DCT | |
cosines = calculate_cosines(boundN, n, N, i, i + numSamplesInFrame, cc, publicKey); | |
innerProductRe = cc->EvalInnerProduct(encSignal.encryptedNumerators, cosines, batchSize); | |
resultRe = cc->EvalMult(innerProductRe, oneCTRe); | |
resultsRe[atFrame].push_back(resultRe); | |
resultReSquared = cc->EvalMult(resultRe, resultRe); | |
//CALCULATE DST | |
if ((n + 1) <= boundM) { | |
sines = calculate_sines(boundM, n + 1, N, i, i + numSamplesInFrame, cc, publicKey); | |
innerProductIm = cc->EvalInnerProduct(encSignal.encryptedNumerators, sines, batchSize); | |
resultIm = cc->EvalMult(innerProductIm, oneCTIm); | |
resultsIm[atFrame].push_back(resultIm); | |
resultImSquared = cc->EvalMult(resultIm, resultIm); | |
} | |
else if ((n + 1) == boundM+1) { | |
resultsIm[atFrame].push_back(zerosCT2); | |
} | |
resultRDFT = cc->EvalAdd(resultReSquared, resultImSquared); | |
RDFT[atFrame].push_back(resultRDFT); | |
} | |
atFrame += 1; | |
} | |
return RDFT; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment