Last active
June 25, 2020 18:50
-
-
Save payne911/2a7474d113159ad6c632618bd620a861 to your computer and use it in GitHub Desktop.
Convex test on binary images (Image integral for Pattern Matching)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 as cv | |
def integral_test(X): # returns True if X is convex | |
img_t = np.reshape(X, (28, 28)) # preprocess: reshaping | |
int_result = cv.integral(img_t.astype(np.uint8)) # calculating the integral-image | |
patterns_to_test = [block_patterns, big_block_patterns, horizontal_patterns, vertical_patterns, | |
horizontal_patterns2, vertical_patterns2, bigger_block_patterns, horizontal_patterns3, | |
vertical_patterns3, bbigger_block_patterns, bbbigger_block_patterns, bbbbigger_block_patterns] | |
for p in range(len(patterns_to_test)): # run test on all patterns until a match is found | |
patterns = patterns_to_test[p] | |
img_x = len(patterns[0][0]) | |
img_y = len(patterns[0]) | |
nbr = np.sum(patterns[0]) | |
pts_of_interest = find_area(int_result, nbr, img_y, img_x) | |
success = find_match(img_t, patterns, pts_of_interest) | |
if success: | |
break | |
return not success # because we have found if it's NOT-convex | |
def find_area(img, target, x_len, y_len): # finds points of interest | |
tmp_interest = [] | |
for x in range(len(img)): # for each row | |
if x >= len(img) - x_len: | |
break | |
for y in range(len(img[x])): # for each column | |
if y >= len(img[x]) - y_len: | |
break | |
tmp_sum = img[x, y] + img[x + x_len, y + y_len] - img[x + x_len, y] - img[x, y + y_len] # constant time | |
if tmp_sum == target: | |
tmp_interest.append((x, y)) | |
return tmp_interest | |
def find_match(img, patterns, points): # returns True if the shape is found (aka img is NOT-convex) | |
pattern_x = patterns[0].shape[0] | |
pattern_y = patterns[0].shape[1] | |
target = pattern_x * pattern_y | |
for pattern in patterns: | |
for (px, py) in points: | |
counter = 0 | |
for x in range(pattern_x): | |
for y in range(pattern_y): | |
if img[x + px][y + py] == pattern[x][y]: # a match was found for a pixel | |
counter = counter + 1 | |
if counter == target: # exact amount of pixels matched | |
return True | |
return False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def is_convex(X): # the complete test for classification | |
if is_convex_primary_test(X): | |
return integral_test(X) | |
else: | |
return False | |
def is_convex_primary_test(X): | |
found_a_white_pixel = False | |
followed_by_full_black_row = False | |
consecutive_black = 0 | |
for y in range(28): # left to right, from top to bottom | |
offset = 28 * y | |
last_check = X[offset] # override last pixel | |
if last_check == 1: # observe first pixel of the row | |
changes = 1 # when we begin inside a region | |
black_counter = 0 | |
else: | |
changes = 0 | |
black_counter = 1 | |
consecutive_black = consecutive_black + 1 | |
for x in range(28): # black line separation test | |
p = X[x + offset] | |
if p == 1: | |
consecutive_black = 0 | |
found_a_white_pixel = True | |
if followed_by_full_black_row: | |
return False # found a second "object" | |
else: | |
black_counter = black_counter + 1 | |
consecutive_black = consecutive_black + 1 | |
if (black_counter == 29 or consecutive_black == 30) and found_a_white_pixel: | |
followed_by_full_black_row = True # found a black row after a white pixel | |
if last_check != p: # change test: cannot have a black pixel between white pixels on the same row | |
changes = changes + 1 | |
if changes > 2: | |
return False | |
last_check = p # keep in memory the last observed pixel for next comparison | |
found_a_white_pixel = False | |
followed_by_full_black_row = False | |
consecutive_black = 0 | |
for x in range(28): # top to bottom, from right to left | |
x = 27-x # to reverse "left to right" | |
last_check = X[x] | |
if last_check == 1: | |
changes = 1 | |
black_counter = 0 | |
else: | |
changes = 0 | |
black_counter = 1 | |
consecutive_black = consecutive_black + 1 | |
for y in range(28): | |
offset = 28 * y | |
p = X[x + offset] | |
if p == 1: | |
consecutive_black = 0 | |
found_a_white_pixel = True | |
if followed_by_full_black_row: | |
return False | |
else: | |
black_counter = black_counter + 1 | |
consecutive_black = consecutive_black + 1 | |
if (black_counter == 29 or consecutive_black == 30) and found_a_white_pixel: | |
followed_by_full_black_row = True | |
if last_check != p: | |
changes = changes + 1 | |
if changes > 2: | |
return False | |
last_check = p | |
return True # has passed all the tests |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# patterns as global variables | |
pattern1 = np.asarray([[1, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0], | |
[1, 1, 1, 1, 1]]) | |
pattern2 = np.rot90(pattern1) | |
pattern3 = np.rot90(pattern2) | |
pattern4 = np.rot90(pattern3) | |
pattern5 = np.fliplr(pattern1) | |
pattern6 = np.rot90(pattern5) | |
pattern7 = np.rot90(pattern6) | |
pattern8 = np.rot90(pattern7) | |
horizontal_patterns = [pattern1, pattern5, pattern3, pattern7] | |
vertical_patterns = [pattern2, pattern6, pattern4, pattern8] | |
pattern9 = np.asarray([[1, 0, 0], | |
[1, 0, 0], | |
[1, 1, 1]]) | |
pattern10 = np.rot90(pattern9) | |
pattern11 = np.rot90(pattern10) | |
pattern12 = np.rot90(pattern11) | |
block_patterns = [pattern9, pattern10, pattern11, pattern12] | |
pattern13 = np.asarray([[1, 0, 0, 0], | |
[1, 0, 0, 0], | |
[1, 1, 0, 0], | |
[1, 1, 1, 1]]) | |
pattern14 = np.rot90(pattern13) | |
pattern15 = np.rot90(pattern14) | |
pattern16 = np.rot90(pattern15) | |
big_block_patterns = [pattern13, pattern14, pattern15, pattern16] | |
pattern17 = np.asarray([[1, 0, 0, 0, 0], | |
[1, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0], | |
[1, 1, 1, 0, 0], | |
[1, 1, 1, 1, 1]]) | |
pattern18 = np.rot90(pattern17) | |
pattern19 = np.rot90(pattern18) | |
pattern20 = np.rot90(pattern19) | |
bigger_block_patterns = [pattern17, pattern18, pattern19, pattern20] | |
pattern21 = np.asarray([[1, 0, 0, 0, 0, 0], | |
[1, 0, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0, 0], | |
[1, 1, 1, 0, 0, 0], | |
[1, 1, 1, 1, 0, 0], | |
[1, 1, 1, 1, 1, 1]]) | |
pattern22 = np.rot90(pattern21) | |
pattern23 = np.rot90(pattern22) | |
pattern24 = np.rot90(pattern23) | |
bbigger_block_patterns = [pattern21, pattern22, pattern23, pattern24] | |
pattern33 = np.asarray([[1, 0, 0, 0, 0, 0, 0], | |
[1, 0, 0, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0, 0, 0], | |
[1, 1, 1, 0, 0, 0, 0], | |
[1, 1, 1, 1, 0, 0, 0], | |
[1, 1, 1, 1, 1, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1]]) | |
pattern34 = np.rot90(pattern33) | |
pattern35 = np.rot90(pattern34) | |
pattern36 = np.rot90(pattern35) | |
bbbigger_block_patterns = [pattern33, pattern34, pattern35, pattern36] | |
pattern45 = np.asarray([[1, 0, 0, 0, 0, 0, 0, 0], | |
[1, 0, 0, 0, 0, 0, 0, 0], | |
[1, 1, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 0, 0, 0], | |
[1, 1, 1, 1, 1, 1, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1, 1]]) | |
pattern46 = np.rot90(pattern45) | |
pattern47 = np.rot90(pattern46) | |
pattern48 = np.rot90(pattern47) | |
bbbbigger_block_patterns = [pattern45, pattern46, pattern47, pattern48] | |
pattern25 = np.asarray([[1, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1]]) | |
pattern26 = np.rot90(pattern25) | |
pattern27 = np.rot90(pattern26) | |
pattern28 = np.rot90(pattern27) | |
pattern29 = np.fliplr(pattern25) | |
pattern30 = np.rot90(pattern29) | |
pattern31 = np.rot90(pattern30) | |
pattern32 = np.rot90(pattern31) | |
horizontal_patterns2 = [pattern25, pattern29, pattern27, pattern31] | |
vertical_patterns2 = [pattern26, pattern30, pattern28, pattern32] | |
pattern37 = np.asarray([[1, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1, 1, 1]]) | |
pattern38 = np.rot90(pattern37) | |
pattern39 = np.rot90(pattern38) | |
pattern40 = np.rot90(pattern39) | |
pattern41 = np.fliplr(pattern37) | |
pattern42 = np.rot90(pattern41) | |
pattern43 = np.rot90(pattern42) | |
pattern44 = np.rot90(pattern43) | |
horizontal_patterns3 = [pattern37, pattern41, pattern39, pattern43] | |
vertical_patterns3 = [pattern38, pattern42, pattern40, pattern44] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment